Skip to main content
Log in

Simulated annealing technique for fast learning of SOM networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohonen T (1995) Self-organizing maps. Springer, Berlin

    Book  Google Scholar 

  2. Valova I, Beaton D, Buer A, MacLean D (2010) Fractal initialization for high-quality mapping with self-organizing maps. Neural Comput Applic 19(7):953–966

    Article  Google Scholar 

  3. Sun A (2010) Improved SOM Algorithm-HDSOM Applied in text clustering. Multimedia information networking and security (MINES), 2010 International Conference on, pp 306–309

  4. Fiannaca A, Rizzo R, Urso A, Gaglio S (2008) A new SOM initialization algorithm for nonvectorial data. Proc of KES 1:41–48

  5. Rizzo R, Chella A (2006) A comparison between habituation and conscience mechanism in self-organizing maps. IEEE Trans Neural Netw 17(3):807–810

    Article  Google Scholar 

  6. DeSieno D (1988) Adding a conscience to competitive learning. In: Proceeding of ICNN’88, international conference on neural networks, IEEE Service Center, Piscataway, NJ, pp 117–124

  7. Berglund E, Sitte J (2006) The parameterless self-organizing map algorithm. IEEE Trans Neural Netw 17(2):305–316

    Article  Google Scholar 

  8. Haese K (2001) Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps. Neural Comput 13(3):595–619

    Article  MATH  Google Scholar 

  9. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  10. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  11. Graepel T, Burger M, Obermayer K (1998) Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 21:173–190

    Article  MATH  Google Scholar 

  12. Douzono H, Hara S, Noguchi Y (2000) A clustering method of chromosome fluorescence profiles using modified self organizing map controlled by simulated annealing. IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN’00), 4

  13. Haese K (1999) Kalman filter implementation of self-organizing feature maps. Neural Comput 11(5):1211–1233

    Article  Google Scholar 

  14. Haese K (1998) Self-organizing feature map with self-adjusting learning parameters. IEEE Trans Neural Netw 9(6):1270–1278

    Article  Google Scholar 

  15. Berglund E, Sitte J (2003) The parameter-less SOM algorithm. In: Proceeding of ANZIIS. pp 159–164

  16. Ingber L (1989) Very fast simulated re-annealing. J Math Comput Model 12(8):967–973

    Article  MathSciNet  MATH  Google Scholar 

  17. Ingber L (1996) Adaptive simulated annealing (ASA): lessons learned. J Control Cybern 25(1):33–54

    MATH  Google Scholar 

  18. Goppert J, Rosenstiel W (1996) Regularized SOM-Training: a solution to the topology-approximation dilemma, University of Tbingen

  19. National Cancer Institute, DTP AIDS antiviral screen dataset. http://dtp.nci.nih.gov/docs/aids/aids/data.html

  20. Di Fatta G, Fiannaca A, Rizzo R, Urso A, Berthold MR, Gaglio S (2006) Context-aware visual exploration of molecular databases. Workshops IEEE international conference on data mining (ICDM 2006), pp 136–141

  21. Deboeck G, Kohonen T (1998) Visual explorations in finance with self-organizing-maps. Springer, London

    Book  MATH  Google Scholar 

  22. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Kaski S (1997) Data exploration using self-organizing maps, PhD thesis, Helsinki University of Technology, Helsinki

  24. Flexer A (1999) On the use of self-organizing maps for clustering and visualization. Comput Sci 1704:80–88

    Google Scholar 

  25. Fiannaca A, Di Fatta G, Gaglio S, Rizzo R, Urso A (2007) Improved SOM learning using simulated annealing. LNCS 4668:279–288

    Google Scholar 

  26. Ultsch A, Korus D (1995) Integration of neural networks and knowledge-based systems. In: Proceeding IEEE on international conference on neural networks, pp 425–426

  27. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans PAMI 16(6):641–647

    Article  Google Scholar 

  28. Halkidi M, Vazirgiannis M (2001) clustering validity assessment: finding the optimal partitioning of data set. In: Proceedings of ICDM 2001, pp 187–194

  29. Bauer HU, Pawelzik KR (1992) Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Trans Neural Netw 3(4):570–579

    Article  Google Scholar 

  30. Villman T, Der R, Hermann M, Martinetz T (1997) Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans Neural Netw 8(2):256–266

    Article  Google Scholar 

  31. Kiviluoto K (1996) Topology preservation in self-organizing maps. In: Proceedings of ICNN 1996, pp 294–299

  32. Vidaurre D, Muruzabal J (2007) A quick assessment of topology preservation for SOM structures. IEEE Trans Neural Netw 18(5):1524–1528

    Article  Google Scholar 

  33. Yang Y, Kamel MS (2006) An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognit 39(7):1278–1289

    Article  MATH  Google Scholar 

  34. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Cluster validity methods: part II. SIGMOD Rec 31(2):40–45

    Article  Google Scholar 

  35. Fiannaca A, Di Fatta G, Rizzo R, Urso A, Gaglio S (2009) Clustering quality and topology preservation in fast learning SOMs. Neural Netw World 19:625–639

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiannaca, A., Di Fatta, G., Rizzo, R. et al. Simulated annealing technique for fast learning of SOM networks. Neural Comput & Applic 22, 889–899 (2013). https://doi.org/10.1007/s00521-011-0780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0780-6

Keywords

Navigation