Skip to main content

Advertisement

Log in

Recursive diameter prediction for calculating merchantable volume of eucalyptus clones using Multilayer Perceptron

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A very common problem in forestry is the realization of the forest inventory. The forest inventory is very important because it allows the trading of medium- and long-term timber to be extracted. On completion , the inventory is necessary to measure different diameters and total height to calculate their volumes. However, due to the high number of trees and their heights, these measurements are an extremely time consuming and expensive. In this work, a new approach to predict recursively diameters of eucalyptus trees by means of Multilayer Perceptron artificial neural networks is presented. By taking only three diameter measures at the base of the tree, diameters are predicted recursively until they reach the value of 4 cm, with no previous knowledge of total tree height. The training was conducted with only 10% of the total trees planted site, and the remaining 90% of total trees were used for testing. The Smalian method was used with the predicted diameters to calculate merchantable tree volumes. To check the performance of the model, all experiments were compared with the least square polynomial approximator and the diameters and volumes estimates with both methods were compared with the actual values measured. The performance of the proposed model was satisfactory when predicted diameters and volumes are compared to actual ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andrade VCL, Calegario N, Scolforo JRS (2006) Análise de algumas alternativas para obter o coeficiente angular da reta no método da altura relativa. Ciência Florestal 16(3):303–337

    Google Scholar 

  2. Baleeiro GB (2007) Modelagem neuro-fuzzy na estimativa de volume de eucalyptus sp. Master’s thesis, Universidade Federal de Lavras, Lavras - MG

  3. Brandão FG (2007) Estimativa da altura total de eucalyptus sp. utiliando lógica fuzzy e neuro fuzzy. Master’s thesis, Universidade Federal de Lavras

  4. Cabacinha CD (2003) Um método para a realização do inventário florestal suprimindo a cubagem rigorosa. Master’s thesis, Universidade Federal de Lavras

  5. Diamantopoulou MJ (2005) Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Elect Agric 48(3):235–244

    Article  Google Scholar 

  6. Diamantopoulou MJ (2005) Predicting fir trees stem diameters using artificial neural network models. South Afr For J 205(1):39–44

    Google Scholar 

  7. Diamantopoulou MJ (2006) Tree-bole volume estimation on standing pine trees using cascade correlation artificial neural network models. Agric Eng Int CIGR EJ VIII

  8. Diamantopoulou MJ, Milios E (2010) Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models. Biosyst Eng 105(3):306–315

    Article  Google Scholar 

  9. Finger CAG (1992) Fundamentos de Biometria Florestal. UFSM/CEPEF/FATEC, Santa Maria

  10. Görgens EB (2006) Estimação do volume de árvores utilizando redes neurais artificiais. Master’s thesis, Universidade Federal de Viçosa

  11. Görgens EB, Leite HG, do Nascimento H, Gleriani JM (2009) Estimação do volume de árvores utilizando redes neurais artificiais. Revista Árvore 33(6)

  12. Guan BT, Gertner G (1991) Modeling red pine tree survival with an artificial neural network. For Sci 37(5):1429–1440

    Google Scholar 

  13. Hagan M, Demuth H, Beale M (1996) Neural network design. PWS Publishing, Boston

    Google Scholar 

  14. Hagan M, Menhaj M (1994) Training feed forward networks with the marquardt algorithm. IEEE Trans Neural Netw 6:861–867

    Google Scholar 

  15. Haykin S (1998) Neural networks—a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  16. Huang J, Zhao J, Gao G, Meng X, Guan Y (2009) Prediction of stand diameter distribution with artificial neural network. In: 2009 fifth international conference on natural computation

  17. Ji Y, Hao J, Reyhani N, Lendasse A (2005) Direct and recursive prediction of time series using mutual information selection. In: IWANN 2005, Lecture Notes in Computer Science, vol 3512, Springer, pp 1010–1017

  18. Leduc DJ, Matney TG, Belli KL, Baldwin VC Jr (2001) Predicting diameter distributions of longleaf pine plantations [electronic resource] : a comparison between artificial neural networks and other accepted methodologies / Daniel J. Leduc ... [et al]. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, Asheville, NC

  19. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q J Appl Math II(2):164–168

    MathSciNet  Google Scholar 

  20. Likas A, Stafylopatis A (2000) Training the random neural network using quasi-newton methods. Eur J Oper Res 126(2):331–339

    Article  MathSciNet  MATH  Google Scholar 

  21. Machado S, Figueiredo Filho A (2003) Dendrometria. UFPR, Curitiba

  22. Marquardt D (1963) An algorithm for least squares estimation of non-linear parameters. J Soci Indus Appl Math 431–441

  23. Özçelik R, Diamantopoulou MJ, Brooks JR, Wiant HV Jr (2010) Estimating tree bole volume using artificial neural network models for four species in turkey. J Environ Manag 91(3):742–753

    Article  Google Scholar 

  24. Pires LM, Calegario N (2007) Ajuste de modelos estocásticos lineares e não-lineares para a descrição do perfil longitudinal de árvores. Revista Árvore 31(5):845–852

    Article  Google Scholar 

  25. Ranson KJ, Masek J, Fu A, Wang D (2007) Predicting tree height and biomass from glas data. In: 10th International Symposium on Physical Measurements and Signatures in Remote Sensing—ISPMSRS’07

  26. Schneider PR, Finger CAG, Klein JEM, Totti JA, Bazzo JL (1996) Forma de tronco e sortimentos de madeira de Eucalyptus grandis maiden para o estado do rio grande do sul. Ciência Florestal 6(1):79–88

    Google Scholar 

  27. Scolforo J (2005) Biometria florestal: Parte I: modelos de regressão linear e não-linear; Parte II: modelos para relação hipsométrica, volume, afilamento, e peso de matéria seca. UFLA/FAEPE, Lavras

  28. Silva MLM, Binoti DHB, Gleriani JM, Leite HG (2009) Ajuste do modelo de schumacher e hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucaplito. Revista Árvore 33(6):1133–1139

    Article  Google Scholar 

  29. Silva RMA, Brandão FG, Baleeiro GB, Valentim FL, Mendonça AR, Pires DM (2008) Fuzzy and neuro-fuzzy estimates of the total height of eucalyptus trees. In: 2008 ACM symposium on Applied computing, ACM, New York, pp 1772–1776

  30. Soares FAAMN, Flores EL, Cabacinha CD, Carrijo GA, Veiga ACP (2011) Recursive diameter prediction and volume calculation of eucalyptus trees using Multilayer Perceptron Networks. Comput Elect Agric 78(1):19–27, Elsevier

    Google Scholar 

  31. Votorantim Celulose e Papel—VCP (2004) Sustainable growth with value creation and solid returns. Tech. rep., VCP

  32. Xiao R, Carande R, Ghiglia D (1998) A neural network approach for tree height estimation using ifsar data. IEEE Trans Geosci Remote Sens 36(5):345–348

    Google Scholar 

  33. Zanchettin C, Ludermir TB (2005) Sistemas neurais híbridos para reconhecimento de padrões em narizes artificiais. SBA Controle & Automação 16(2)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrízzio Alphonsus A. M. N. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, F.A.A.M.N., Flores, E.L., Cabacinha, C.D. et al. Recursive diameter prediction for calculating merchantable volume of eucalyptus clones using Multilayer Perceptron. Neural Comput & Applic 22, 1407–1418 (2013). https://doi.org/10.1007/s00521-012-0823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0823-7

Keywords

Navigation