Skip to main content

Advertisement

Log in

An asymmetry algorithm based on parameter transformation for Hessian matrix

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An asymmetry algorithm recognition model, which is presented based on Hessian matrix transform by adjusting the diagonal parameter of Hessian matrix and which does not change the positive semi-definite characteristic, increases or decreases the distance between positive class or negative class and hyperplane on the asymmetry sample set and realizes our intention for separating the small samples more precisely. The experiment indicates that we cannot simply fix the diagonal parameter of Hessian matrix but must dynamically adjust the diagonal weight coefficient for controlling the number of error-divided samples. This modified asymmetry learning algorithm is more superior than the traditional standard SVM method and can recognize DNA sequence and its mean recognition rate comes to 93.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anfinsen CB, Haber E, Sfla M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci 47(9):1309–1314

    Article  Google Scholar 

  2. Attwood TK, Parry-Smith DJ (2002) Introduction to bioinformatics (trans: Luo JC). Peking University Press, Beijing

    Google Scholar 

  3. Chautard E, Ballut L, Thierry-Mieg N, Ricard-Blum S, Matrix DB (2009) A database focused on extracellular protein-protein and protein-carbohydrate interactions. Bioinformatics 25(5):690–691

    Article  Google Scholar 

  4. Blankenburg H et al (2009) Exchanging, annotating and assessing molecular interaction data. Bioinformatics 25(10):1321–1328

    Article  Google Scholar 

  5. Kandasamy K et al (2009) PathBuilder–open source software for annotating and developing pathway resources. Bioinformatics 25(21):2860–2862

    Article  Google Scholar 

  6. Cain SA et al (2009) Defining elastic fiber interactions by molecular fishing: an affinity purification and mass spectrometry approach. Mol Cell Proteomics 8(12):2715–2732

    Article  MathSciNet  Google Scholar 

  7. Keerthikumar S et al (2009) Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach. DNA Res 16(6):345–351

    Article  Google Scholar 

  8. Zhao J, Jiang P, Zhang W (2010) Molecular networks for the study of TCM pharmacology. Brief Bioinform 11(4):417–430

    Google Scholar 

  9. Wang L et al (2010) An integrated database of human lung cancer research. Nucleic Acids Res 38(suppl_1):D665–D669

    Google Scholar 

  10. Zheng P et al (2010) Ye predicting meiotic pathways in human fetal oogenesis. Biol Reprod 82(3): 543–551

    Google Scholar 

  11. Wu CC et al (2010) Prediction of human functional genetic networks from heterogeneous data using RVM-based ensemble learning. Bioinformatics 26(6):807–813

    Article  Google Scholar 

  12. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of the 5th annual ACM workshop on computational learning theory. ACM Press, Pittsburgh, PA, pp 144–152

    Google Scholar 

  13. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  14. Mika S et al (1999) Fisher discriminant analysis with Kernels. Neural networks for signal processing IX. IEEE Press, New York, NY, pp 41–48

    Google Scholar 

  15. Suykens JAK et al (2002) A support vector machine formulation to PCA analysis and its Kernel version. ESAT-SCD-SISTA technical report 2002-68, Katholieke Universiteit Leuven, Belgium

  16. Seeger M (2004) Gaussian processes for machine learning. Int J Neural Syst 14(2):1–38

    Article  Google Scholar 

  17. Hui HZ, Ze CY, Gui LY, Ming XX (2005) Data fusion for fault diagnosis using multi-class support vector machines. J Zhejiang Univ Sci 6A(No. 10):1030–1039

  18. Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 36:1171–1220

    Article  MATH  Google Scholar 

  19. Taylor JS, Cristianini N (1999) Further results on the margin distribution. In: Proceedings of the 12th conference on computational learning theory, pp 278–285

  20. Karakoulas GJ, Taylor JS (1999) Optimizing classifiers for imbalanced training sets. In: NIPS, pp 253–259

  21. Cristianini N, Shawe-Taylor (2005) Introduction to support vector machines, (trans: Li G-z, Wang-meng, Zeng H-J). Electronic Industry Press, Beijing

  22. Xue Y (2001) Optimization theory and methods. Beijing Industrial University Press, Beijing

  23. Murzin GA et al (2010) Structural classification of proteins. http://scop.mrc-lmb.cam.ac.uk/scop/

  24. Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10(3):626–634

    Google Scholar 

  25. Potamitis L, Fakotakis N, Kokkinakis G (2000) Independent component analysis applied to feature extraction for robust automatic speech recognition. Electron Lett 36:23

    Google Scholar 

  26. Jung TP et al (2001) Imaging brain dynamics using independent component analysis. Proc IEEE 89(7):1107–1122

    Article  Google Scholar 

  27. Zhang XH, Chen CH (2002) New independent component analysis method using higher order statistics with application to remote sensing images. Opt Eng 41(7):1717

    Article  Google Scholar 

  28. Choudrey RA, Roberts SJ (2003) Variational mixture of Bayesian independent component analyzers. Neural Comput 15(1):213–252

    Article  MATH  Google Scholar 

  29. Boscolo R, Pan H, Roychowdhury VP (2004) Independent component analysis based on nonparametric density estimation. IEEE Trans Neural Netw 15(1): 55–65

    Google Scholar 

  30. Lu W, Rajapakse JC (2005).Approach and applications of constrained ICA. IEEE Trans Neural Netw 16(1): 203–212

    Google Scholar 

  31. Gao P, Woo WL, Dlay SS (2006) Non-linear independent component analysis using series reversion and Weierstrass network. IEEE Proc Vision Image Signal Process 15(2): 115

    Google Scholar 

  32. Hamza A, Chitroub S (2007) Performance study of receiver based on independent component analysis in CDMA systems. Automat Contr Comput Sci 41:6, 343–349

    Google Scholar 

  33. Crespo-Garcia M, Atienza M, Jose LC (2008) Muscle artifact removal from human sleep EEG by using independent component analysis. Ann Biomed Eng 36(3):467–475

    Article  Google Scholar 

  34. Xu L et al (2009) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30(3):711–724

    Article  Google Scholar 

  35. Zhang L et al (2010) Improving mental task classification by adding high frequency band information. J Med Syst 34(1):51–60

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by Natural Science Foundation Project of CQ CSTC and Science & Technology Program of ChongQing NanAn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeju Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Song, L. An asymmetry algorithm based on parameter transformation for Hessian matrix. Neural Comput & Applic 21, 1545–1550 (2012). https://doi.org/10.1007/s00521-012-0876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0876-7

Keywords

Navigation