Skip to main content
Log in

Minimal solution of fuzzy linear system of differential equations

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new approach to solve the fuzzy linear system of differential equations based on pseudo-inverse is presented. In this work, we discuss the minimal solution of a system of linear fuzzy differential equations such as \(A\dot{x}(t)=B\dot{x}(t)+Cx(t), x(0)=x_0\) where AB, and C are three real m  ×  n matrices and the initial condition x 0 is described by a vector made up of n fuzzy numbers. In this paper, we investigated a necessary and sufficient conditions for the existence fuzzy derivative \(\dot{x}(t)\) of a fuzzy process x(t) and a necessary and sufficient conditions for the minimal solution vector to be a fuzzy vector, given arbitrary input fuzzy vector x 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasbandy S, Jafarian A, Ezzati R (2005) Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. Appl Math Comput 171:1184–1191

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasbandy S, Nieto JJ, Alavi M (2005) Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26:1337–1341

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbasbandy S, Ezzati R, Jafarian A (2006) LU decomposition method for solving fuzzy system of linear equations. Appl Math Comput 172:633–643

    Article  MathSciNet  MATH  Google Scholar 

  4. Abbasbandy S, Otadi M, Mosleh M (2008) Minimal solution of general dual fuzzy linear systems. Chaos Solitons Fractals 37:1113–1124

    Article  MathSciNet  MATH  Google Scholar 

  5. Allahviranloo T, Ahmadi N, Ahmadi E (2007) Numerical solution of fuzzy differential equations by predictor-corrector method. Sciences 177:1633–1647

    MATH  Google Scholar 

  6. Allahviranloo T, Ahmadi E, Ahmadi N (2008) Nth-order fuzzy linear differential equations. Inf Sci 178:1309–1324

    Article  MATH  Google Scholar 

  7. Allahviranloo T, Kiani NA, Motamedi N (2009) Solving fuzzy differential equations by differential transformation. Inf Sci 179:956–966

    Article  MathSciNet  MATH  Google Scholar 

  8. Allahviranloo T, Barkhordari Ahmadi M (2010) Fuzzy Laplace transforms. Soft Comput 14:235–243

    Article  MATH  Google Scholar 

  9. Asady B, Abbasbandy S, Alavi M (2005) Fuzzy general linear systems. Appl Math Comput 169:34–40

    Article  MathSciNet  MATH  Google Scholar 

  10. Barnet S (1990) Matrix methods and applications. Clarendon Press, Oxford

    Google Scholar 

  11. Buckley JJ, Feuring T (2000) Fuzzy differential equations. Fuzzy Sets Syst 110:69–77

    Article  MathSciNet  Google Scholar 

  12. Caldas M, Jafari S (2005) θ-Compact fuzzy topological spaces. Chaos Solitons Fractals 25:229–232

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang SL, Zadeh SL (1972) On fuzzy mapping and control. IEEE Trans Syst Man Cybem 2:30–34

    MathSciNet  MATH  Google Scholar 

  14. Dubois D, Prade H (1978) Operations on fuzzy numbers. J Syst Sci 9:613–626

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubois D, Prade H (1982) Towards fuzzy differential calculus: part3, differentiation. Fuzzy Sets Syst 8:225–233

    Article  MathSciNet  MATH  Google Scholar 

  16. Elnaschie MS (2004) A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos Solitons Fractals 19:209–236

    Article  Google Scholar 

  17. Elnaschie MS (2004) The concepts of E infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics. Chaos Solitons Fractals 22:495–511

    Article  Google Scholar 

  18. Elnaschie MS (2005) On a fuzzy Kãhler manifold which is consistent with the two slit experiment. Int J Nonlinear Sci Numer Simul 6:95–98

    Article  Google Scholar 

  19. Elnaschie MS (2006) Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics. Chaos Solitons Fractals 27:297–330

    Article  Google Scholar 

  20. Elnaschie MS (2006) Superstrings, entropy and the elementary particles content of the standard model. Chaos Solitons Fractals 29:48–54

    Article  Google Scholar 

  21. Feng G, Chen G (2005) Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos Solitons Fractals 23:459–467

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedman M, Ming M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96:201–209

    Article  MathSciNet  MATH  Google Scholar 

  23. Friedman M, Ming M, Kandel A (2000) Duality in fuzzy linear systems. Fuzzy Sets Syst 109:55–58

    Article  MATH  Google Scholar 

  24. Goetschel R, Voxman W (1986) Elementary fuzzy calculus. Fuzzy Sets Syst 18:31–43

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang W, Guo-Dong Q, Bin D (2005) \(H_\infty\) variable universe adaptive fuzzy control for chaotic system. Chaos Solitons Fractals 24:1075–1086

    Google Scholar 

  26. Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaufmann A, Gupta MM (1985) Introduction fuzzy arithmetic. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  28. Kincaid D, Cheney W (1996) Numerical analysis, mathematics of scientific computing, 2nd edn. Brooks/Cole Publishing Co., Pacific Grove

    MATH  Google Scholar 

  29. Ming M, Friedman M, Kandel A (1999) A new fuzzy arithmetic. Fuzzy Sets Syst 108:83–90

    Article  MATH  Google Scholar 

  30. Ming M, Friedman M, Kandel A (1999) Numerical solutions of fuzzy differential equations. Fuzzy Sets Syst 105:133–138

    Article  MATH  Google Scholar 

  31. Nozari K, Fazlpour B (2007) Some consequences of spacetime fuzziness. Chaos Solitons Fractals 34:224–234

    Article  MathSciNet  MATH  Google Scholar 

  32. Otadi M, Mosleh M (2011) Simulation and evaluation of dual fully fuzzy linear systems by fuzzy neural network. Appl Math Model 35:5026–5039

    Article  MathSciNet  MATH  Google Scholar 

  33. Otadi M, Mosleh M, Abbasbandy S (2011) Numerical solution of fully fuzzy linear systems by fuzzy neural network. Soft Comput 15:1513–1522

    Article  MATH  Google Scholar 

  34. Park JH (2004) Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22:1039–1046

    Article  MathSciNet  MATH  Google Scholar 

  35. Pearson DW (1997) A property of linear fuzzy differential equations. Appl Math Lett 10:99–103

    Article  MathSciNet  MATH  Google Scholar 

  36. Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91:552–558

    Article  MathSciNet  MATH  Google Scholar 

  37. Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24:319–330

    Article  MathSciNet  MATH  Google Scholar 

  38. Tanaka Y, Mizuno Y, Kado T (2005) Chaotic dynamics in the Friedman equation. Chaos Solitons Fractals 24:407–422

    Article  MATH  Google Scholar 

  39. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to offer our particular thanks to Dr. M. Eghbali for having edited this paper. We would also like to present our sincere thanks to the referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mosleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosleh, M., Otadi, M. Minimal solution of fuzzy linear system of differential equations. Neural Comput & Applic 21 (Suppl 1), 329–336 (2012). https://doi.org/10.1007/s00521-012-0913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0913-6

Keywords

Navigation