Abstract
This paper presents an exposition of a new method of swarm intelligence–based algorithm for optimization. Modeling swallow swarm movement and their other behavior, this optimization method represents a new optimization method. There are three kinds of particles in this method: explorer particles, aimless particles, and leader particles. Each particle has a personal feature but all of them have a central colony of flying. Each particle exhibits an intelligent behavior and, perpetually, explores its surroundings with an adaptive radius. The situations of neighbor particles, local leader, and public leader are considered, and a move is made then. Swallow swarm optimization algorithm has proved high efficiency, such as fast move in flat areas (areas that there is no hope to find food and, derivation is equal to zero), not getting stuck in local extremum points, high convergence speed, and intelligent participation in the different groups of particles. SSO algorithm has been tested by 19 benchmark functions. It achieved good results in multimodal, rotated and shifted functions. Results of this method have been compared to standard PSO, FSO algorithm, and ten different kinds of PSO.


















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York
Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41
Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66
Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge
Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of the IEEE international conference on neural networks. IEEE Press, Piscataway, pp 1942–1948
Clerc M (2007) Particle swarm optimization. ISTE Ltd., London
Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1(1):33–57
Li XL (2003) A new intelligent optimization-artificial fish swarm algorithm. PhD thesis, Zhejiang University, China, June, 2003
Jiang MY, Yuan DF (2006) Artificial fish swarm algorithm and its applications. In: Proceedings of the international conference on sensing, computing and automation, (ICSCA’2006). Chongqing, China, 8–11 May. 2006, pp 1782–1787
Xiao JM, Zheng XM, Wang XH (2006) A modified artificial fish-swarm algorithm. In Proc. of the IEEE 6th World Congress on Intelligent Control and Automation, (WCICA’2006). Dalian, China, 21–23 June 2006, pp 3456–3460
Krishnanand KN, Ghose D (2005) Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. Proceedings of IEEE swarm intelligence symposium. IEEE Press, Piscataway, pp 84–91
Krishnanand KN, Ghose D (2006) Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent Grid Syst 2(3):209–222
Krishnanand KN, Ghose D (2006) Theoretical foundations for multiple rendezvous of glowworm inspired mobile agents with variable local-decision domains. Proceedings of American control conference. IEEE Press, Piscataway, pp 3588–3593
Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3:87–124. doi:10.1007/s11721-008-0021-5
Dorigo M, Trianni V, Sahin E, Gross R, Labella TH, Baldassarre G, Nolfi S, Deneubourg J-L, Mondada F, Floreano D, Gambardella LM (2004) Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots 17(2–3):223–245
Fronczek JW, Prasad NR (2005) Bio-inspired sensor swarms to detect leaks in pressurized systems. In: Proceedings of IEEE international conference on systems, man and cybernetics. IEEE Press, Piscataway, pp 1967–1972
Zarzhitsky D, Spears DF, Spears WM (2005) Swarms for chemical plume tracing. Proceedings of IEEE Swarm intelligence symposium. IEEE Press, Piscataway, pp 249–256
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
Heppner H, Grenander U (1990) A stochastic non-linear model for coordinated bird flocks. In: Krasner S (ed) The ubiquity of chaos. AAAS, Washington, pp 233–238
Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. IEEE, Nagoya, Japan, Piscataway, pp 39–43
Eberhart RC, Simpson PK, Dobbins RW (1996) Computational intelligence PC tools. Academic Press, Boston
Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization an overview. Swarm Intell 1:33–57. doi:10.1007/s11721-007-0002-0
Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence, pp 69–73
Clerc M, Kennedy J (2002) The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325
Yasuda K, Ide A, Iwasaki N (2003) Stability analysis of particle swarm optimization. In: Proceedings of the 5th metaheuristics international conference, pp. 341–346
Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255
van den Bergh F, Engelbrecht AP (2006) A study of particle optimization particle trajectories. Inf Sci 176(8):937–971
Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of IEEE congress on evolution and computation, pp 1945–1950
Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. IEEE Congr Evol Comput 1:101–106
Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of IEEE congress on evolution and computation, Seoul, Korea, pp 94–97
Clerc M (1999) The swarm and the queen: toward a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolution and Computation, pp 1951–1957
Clerc M, Kennedy J (2002) The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceeding of IEEE Congress on Evolution and Computation, pp 84–88
Kennedy J (1997) The particle swarm social adaptation of knowledge. In: Proceedings of IEEE international conference on Evolution and computation. Indianapolis, IN, pp 303–308
Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of IEEE congress on evolution and computation. Washington DC, pp 1958–1962
Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255
Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of IEEE congress on evolution and computation. Anchorage, AK, pp 84–89
Juang CF (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B Cybern 34(2):997–1006
Chen YP, Peng WC, Jian MC (2007) Particle swarm optimization with recombination and dynamic linkage discovery. IEEE Trans Syst Man Cybern B Cybern 37(6):1460–1470
Andrews PS (2006) An investigation into mutation operators for particle swarm optimization. In: Proceedings of IEEE congress on evolution and computation. Vancouver, BC, Canada, pp 1044–1051
Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search. In: Proceedings of IEEE congress on evolution and computation, pp 522–528
Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of IEEE conference on systems, man, cybernetics, pp 3816–3821
van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239
Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255
Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224
Brits R, Engelbrecht AP, van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of 4th Asia-Pacific conference on simulation and evolution and learning, pp. 692–696
Brits R, Engelbrecht AP, van den Bergh F (2007) Locating multiple optima using particle swarm optimization. Appl Math Comput 189(2):1859–1883
Parrott D, Li XD (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10(4):440–458
Zhan Z, Zhang J, Li Y, Shu-Hung Chung H (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B Cybern 39(6):1362–1381
Liu J-L, Chang C–C (2008) Novel orthogonal momentum-type particle swarm optimization applied to solve large parameter optimization problems. J Artif Evol Appl 1:1–9
Sivanandam SN, Visalakshi P (2009) Dynamic task scheduling with load balancing using parallel orthogonal particle swarm optimization. Int J Bio Inspired Comput 1(4):276–286
Zhan Z-H, Zhang J, Li Y, Shi Y-H (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847
Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of IEEE congress on evolution and computation. Honolulu, HI, pp 1671–1676
Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cyber Part C Appl Rev 36(4):515–519
Hu X, Eberhart RC (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of IEEE congress on evolution and computation. Honolulu, HI, pp 1677–1681
Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer. In: Proceedings of swarm intelligence symposium, pp 124–129
Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: Simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210
Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295
Li LX, Shao ZJ, Qian JX (2002) An Optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38
Zhang M, Shao C, Li F, Gan Y, Sun J (2006) Evolving neural network classifiers and feature subset using artificial fish swarm. In: Proceedings of the 2006 IEEE international conference on mechatronics and automation, June 25–28. Luoyang, China
Jiang M, Wang Y, Rubio F, Yuan D (2007) Spread spectrum code estimation by artificial fish swarm algorithm. In: IEEE international symposium on intelligent signal processing (WISP)
Jiang MY, Yuan DF (2005) Wavelet threshold optimization with artificial fish swarm algorithm. In: Proceedings of the IEEE international conference on neural networks and brain, (ICNN&B’2005), Beijing, China, 13–15, pp 569–572
Paul Gorenzel W, Salmon TP (1994) Swallows, prevention and control of wildlife damage
Lazareck LJ, Moussavi Z Adaptive swallowing sound segmentation by variance dimension
Angela T, Chris R (1989) Swallows and martins: an identification guide and handbook. Houghton-Mifflin. ISBN 0-395-51174-7
Bijlsma RG, van den Brink B (2005) A Barn Swallow Hirundo rustica roost under attack:timing and risks in the presence of African Hobbies Falco cuvieri. Ardea 93(1):37–48
Saino N, Galeotti P, Sacchi R, Møller A (1997) Song and immunological condition in male barn swallows (Hirundo rustica). Behav Ecol 8(94):364–371. doi:10.1093/beheco/8.4.364 (http://dx.doi.org/10.1093%2Fbeheco%2F8.4.364)
Brown CR (1986) Cliff swallow colonies as information centers. Science 234:83–85
Brown CR, Brown M, Shaffer ML (1991) food sharing signals among socially foraging cliff swallows. Anim Behav 42:551–564
Safran R (2010) Barn swallows: sexual and social behavior. Encycl Animal Behav 1:139–144 (Elsevier)
Snapp BD (1976) Colonial breeding in the barn swallow (hirundo rustica) and its adaptive significance. Condor 783471480
Smith LC, Raouf SA, Brown MB, Wingfield JC, Brown CR (2005) Testosterone and group size in cliff swallows: testing the “challenge hypothesis” in a colonial bird. Horm Behav 47:76–82
Mccarty JP, Winkler DW (1999) Foraging ecology and diet tree swallows feeding selectivity of nestlings. The Condor IO 1:246–254. The cooper ornithological society
Whitley D, Rana D, Dzubera J, Mathias E (1996) Evaluating evolutionary algorithms. Artif Intell 85(1–2):245–276
Salomon R (1996) Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39:263–278
Esquivel SC, Coello CAC (2003) On the use of particle swarm optimization with multimodal functions. IEEE Congr Evol Comput 2:1130–1136
Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wily, New York
Esmin AAA, Lambert-Torres G, Alvarenga GB (2006) UFLA, Brazil, hybrid evolutionary algorithm based on PSO and GA mutation, sixth international conference on hybrid intelligent systems. HIS ‘06
Settles M, Soule T (2005) Breeding swarms: A GA/PSO Hybrid. In: GECCO ‘05: proceedings of the 2005 conference on genetic and evolutionary computation, pp 161–168
Meng Y, Kazeem O (2007) A hybrid ACO/PSO control algorithm for distributed swarm robots. In: Proceedings of the 2007 IEEE swarm intelligence symposium (SIS 2007)
Gomez-Cabrero D, Ranasinghe DN (2005) Fine-tuning the ant colony system algorithm through particle swarm optimization, technical report TR07-2005. Departamento de Estadistica e Investigacio Operativa, Universitat de Valencia, Burjassot, Spain
Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish swarm algorithm and particle swarm optimization for feed forward neural network training, 2007 international conference on intelligent systems and knowledge engineering (ISKE 2007)
Shi H, Bei Z (2008) Application of improved ant colony algorithm. In: 4th International conference on natural computation. ICNC ‘08
Shi H, Bei Z (2009) A mixed ant colony algorithm for function optimization. In: Proceedings of the 21st annual international conference on Chinese control and decision IEEE Press Piscataway, NJ, USA, pp 3919–3923
Mishra SK (2006) Performance of differential evolution and particle swarm methods on some relatively harder multi-modal benchmark functions. Available at SSRN: http://ssrn.com/abstract=937147
Ho S-Y, Lin H-S, Liauh W-H, Ho S-J (2008) OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans Syst Man Cybern Part A 38(2):288–298
Berliner S (2004) The Birders Report. http://home.earthlink.net/~s.berliner/
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neshat, M., Sepidnam, G. & Sargolzaei, M. Swallow swarm optimization algorithm: a new method to optimization. Neural Comput & Applic 23, 429–454 (2013). https://doi.org/10.1007/s00521-012-0939-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-012-0939-9