Skip to main content

Advertisement

Log in

Intelligent-controlled doubly fed induction generator system using PFNN

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An intelligent-controlled doubly fed induction generator (DFIG) system using probabilistic fuzzy neural network (PFNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency power system when the electricity grid fails for all sub-synchronous, synchronous, and super-synchronous conditions. The rotor side converter is controlled using the field-oriented control to produce three-phase stator voltages with constant magnitude and frequency at different rotor speeds. Moreover, the grid side converter, which is also controlled using field-oriented control, is primarily implemented to maintain the magnitude of the DC-link voltage. Furthermore, an intelligent PFNN controller is proposed for both the rotor and grid side converters to improve the transient and steady-state responses of the DFIG system at different operating conditions. The network structure, online learning algorithm, and convergence analyses of the PFNN are introduced in detail. Finally, the feasibility of the proposed control scheme is verified using some experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

v abs , v bcs , v cas :

Three-phase stator line voltage

i as , i bs , i cs :

Three-phase stator current

i al , i bl , i cl :

Three-phase load current

i ar , i br , i cr :

Three-phase rotor current

i a , i b , i c :

Three-phase current of grid side converter

L a , L b , L c :

Three-phase inductor at grid side converter

v an , v bn , v cn :

Three-phase stator phase voltage

C :

DC-link capacitance

V :

Magnitude of stator phase voltage

V n :

Magnitude of phase A stator voltage

\( V_{n}^{*} \) :

Command magnitude of phase A stator voltage

V dc :

DC-link voltage

\( V_{\text{dc}}^{*} \) :

Command of DC-link voltage

d,q :

d-q axis

v ds , v qs :

Two-axis stator voltage

R s :

Stator resistance

λ ds , λ qs :

Two-axis stator flux linkage

i ds , i qs :

Two-axis stator current

i dr , i qr :

Two-axis rotor current

L s :

Stator inductance

L m :

Magnetizing inductance

P :

Pole numbers

θ e , ω e :

Electric angle and angular speed of stator phase voltage

θ r , ω r :

Rotor angle and angular speed

θ sl , ω sl :

Slip angle and angular speed

θ m , ω m :

Mechanical angle and angular speed

P s :

Real power of grid side converter

Q s :

Reactive power of grid side converter

v d , v q :

Two-axis voltage of grid side converter

\( i_{d} ,i_{d}^{*} \) :

d-axis current and command current of grid side converter

\( i_{q} ,i_{q}^{*} \) :

q-axis current and command current of grid side converter

References

  1. Lin FJ, Hwang WJ, Wai RJ (1999) A supervisory fuzzy neural network control system for tracking periodic inputs. IEEE Trans Fuzzy Syst 7(1):41–52

    Article  Google Scholar 

  2. Wang LX (1997) A course in fuzzy systems and control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  3. Park YM, Choi MS, Lee KY (1996) An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans Neural Netw 7(5):1099–1110

    Article  Google Scholar 

  4. Yu W, Li X (2004) Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans Fuzzy Syst 12(3):411–420

    Article  Google Scholar 

  5. Lin FJ, Shieh HJ, Huang PK, Teng LT (2006) Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator. IEEE Trans Ultrason Ferroelectr Freq Control 53(9):1649–1661

    Article  Google Scholar 

  6. Gao Y, Er MJ (2005) An intelligent adaptive control scheme for postsurgical blood pressure regulation. IEEE Trans Neural Netw 16(2):475–483

    Article  MathSciNet  Google Scholar 

  7. Lin FJ, Huang PK, Wang CC, Teng LT (2007) An induction generator system using fuzzy modeling and recurrent fuzzy neural network. IEEE Trans Power Electron 22(1):260–271

    Article  Google Scholar 

  8. Specht DF (1990) Probabilistic neural network. Neural Netw 3(1):109–118

    Article  Google Scholar 

  9. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Statist 33(3):1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  10. Mao KZ, Tan KC, Ser W (2000) Probabilistic neural-network structure determination for pattern classification. IEEE Trans Neural Netw 11(4):1009–1016

    Article  Google Scholar 

  11. Pidre JC, Carrillo CJ, Lorenzo AEF (2003) Probabilistic model for mechanical power fluctuations in asynchronous wind parks. IEEE Trans Power Syst 18(2):761–768

    Article  Google Scholar 

  12. Tripathy M, Maheshwari RP, Verma HK (2010) Power transformer differential protection based on optimal probabilistic neural network. IEEE Trans Power Del 25(1):102–112

    Article  Google Scholar 

  13. Meghdadi AH, Akbarzadeh-T MR (2001) Probabilistic fuzzy logic and probabilistic fuzzy systems. Tenth IEEE International Conference on Fuzzy Systems, University of Melbourne, Australia, In, pp 1127–1130

    Google Scholar 

  14. Liu Z, Li HX (2005) A probabilistic fuzzy logic system for modeling and control. IEEE Trans Fuzzy Syst 13(6):848–859

    Article  Google Scholar 

  15. Li HX, Liu Z (2008) A probabilistic neural-fuzzy learning system for stochastic modeling. IEEE Trans Fuzzy Syst 16(4):898–908

    Article  Google Scholar 

  16. Lin FJ, Teng LT, Shieh PH, Li YF (2006) Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN. IEE Proc Electr Power Appl 153(4):608–618

    Article  Google Scholar 

  17. Lin FJ, Teng LT, Lin JW, Chen SY (2009) Recurrent FL-Based fuzzy neural network controlled induction generator system using improved particle swarm optimization. IEEE Trans Ind Electron 56(5):1557–1577

    Article  Google Scholar 

  18. Pena R, Clare JC, Asher GM (1996) Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc Electr Power Appl 143(3):231–241

    Article  Google Scholar 

  19. Muller S, Deicke M, De Doncker RW (2002) Doubly-fed induction generator systems for wind turbines. IEEE Ind Appl Magazine 8(3):26–33

    Article  Google Scholar 

  20. Pena R, Clare JC, Asher GM (1996) A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine. IEE Proc Electr Power Appl 143(5):380–387

    Article  Google Scholar 

  21. Forchetti D, Garcia G, Valla MI (2002) Vector control strategy for a doubly-fed stand-alone induction generator. In: IEEE annual conference of the industrial electronics society, Sevilla, 5–8 Nov 2002, pp 991–995

  22. Jain AK, Ranganathan VT (2008) Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid. IEEE Trans Ind Electron 55(1):218–228

    Article  Google Scholar 

  23. Iwanski G, Koczara W (2008) DFIG-based power generation system with UPS function for variable-speed applications. IEEE Trans Ind Electron 55(8):3047–3054

    Article  Google Scholar 

  24. Yao J, Li H, Chen Z (2008) An improved control strategy of limiting the DC-link voltage fluctuation for a doubly fed induction wind generator. IEEE Trans Power Electron 23(3):1205–1213

    Google Scholar 

  25. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  26. Lin FJ, Wai RJ, Lee CC (1999) Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC–DC converter. IEE Proc -Control Theory Appl 146(1):99–107

    Article  Google Scholar 

  27. Yoo SJ, Choi YH, Park JB (2009) Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach. IEEE Trans Circuits Syst 53(6):1381–1395

    MathSciNet  Google Scholar 

  28. Wai RJ, Li CM (2009) Design of dynamic Petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot. IEEE Trans Ind Electron 56(7):2667–2683

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Institute of Nuclear Energy Research of Taiwan, R.O.C. through its grant 1002001INER063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faa-Jeng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, FJ., Huang, YS., Tan, KH. et al. Intelligent-controlled doubly fed induction generator system using PFNN. Neural Comput & Applic 22, 1695–1712 (2013). https://doi.org/10.1007/s00521-012-0965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0965-7

Keywords