Skip to main content
Log in

Using competitive layer model implemented by Lotka–Volterra recurrent neural networks for detecting brain activated regions from fMRI data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The competitive layer model (CLM) implemented by the Lotka–Volterra recurrent neural networks (LV RNNs) is prominently characterized by its capability of binding neurons with similar feature into the same layer by competing among neurons at different layers in a column. This paper proposes to use the CLM of the LV RNN for detecting brain activated regions from the fMRI data. The correlated voxels from brain fMRI data can be obtained, and the clusters from fMRI time series can be uncovered. Experiments on synthetic and real fMRI data demonstrate the effectiveness of binding activated voxels into the ‘active’ layers of the CLM. The activated voxels can be detected more accurately than some existing methods by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87:9868–9872

    Article  Google Scholar 

  2. Bihan DL (1995) Diffusion and perfusion magnetic resonance imaging: application to functional MRI. Raven, New York

    Google Scholar 

  3. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  Google Scholar 

  4. Bandettini P, Jesmanowicz A, Wong E, Hyde J (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30(2):161–173

    Article  Google Scholar 

  5. Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-series. Hum Brain Mapp 2:69–78

    Google Scholar 

  6. Friston KJ (1996) Statistical parametric mapping and other analyses of functional imaging data. Brain mapping: the methods. Academic Press, San Diego, pp 363–396

    Google Scholar 

  7. Sychra JJ, Bandettini PA, Bhattacharya N, Lin Q (1994) Synthetic images by subspace transforms I. Principal components images and related filters. Med Phys 21(2):193–201

    Article  Google Scholar 

  8. Backfrieder W, Baumgartner R, Samal M, Moser E, Bergmann H (1996) Quantification of I intensity variations in functional MR images using rotated principal components. Phys Med Biol 41:1425–1438

    Article  Google Scholar 

  9. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    Article  Google Scholar 

  10. Zhang J, Cheng W, Wang Z, Zhang Z, Lu W, et al. (2012) Pattern classification of large-scale functional brain networks: identification of informative neuroimaging markers for epilepsy. PLoS ONE 7(5):e36733. doi:10.1371/journal.pone.0036733

  11. Wang D, Shi L, Yeung DS, Tsang ECC, Heng PA (2007) Ellipsoidal support vector clustering for functional MRI analysis. Pattern Recogn 40:2685–2695

    Article  MATH  Google Scholar 

  12. Chen H, Yuan H, Yao D, Chen L, Chen W (2006) An integrated neighborhood correlation and hierarchical clustering approach of functional MRI. IEEE Trans Biomed Eng 53:452–458

    Article  Google Scholar 

  13. Goutte C, Toft P, Rostrup E, Nielsen FA, Hansen LK (1999) On clustering fMRI time series. NeuroImage 9:298–310

    Article  Google Scholar 

  14. Chuang KH, Chiu MJ, Lin CC, Chen JH (1999) Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means. IEEE Trans Med Imaging 18(12):1117–1128

    Article  Google Scholar 

  15. Baune A, Sommer FT, Erb M, Wildgruber D, Kardatzki B, Palm G, Grodd W (1999) Dynamical cluster analysis of cortical fMRI activation. NeuroImage 9:477–489

    Article  Google Scholar 

  16. Chen S, Bouman CA, Lowe M (2004) Clustered components analysis for functional MRI. IEEE Trans Med Imaging 23(1):85–98

    Article  Google Scholar 

  17. Lohmann G, Bohn S (2002) Using replicator dynamics for analyzing fMRI data of the human brain. IEEE Trans Med Imaging 21(5):485–492

    Article  Google Scholar 

  18. Yi Z, Zhang L, Yu J, Tan KK (2009) Permitted and forbidden sets in discrete-time linear threshold recurrent neural networks. IEEE Trans Neural Netw 20:952–963

    Article  Google Scholar 

  19. Yu J, Yi Z, Zhang L (2009) Representations of continuous attractors of recurrent neural networks. IEEE Trans Neural Netw 20:368–372

    Article  Google Scholar 

  20. Zhang L, Yi Z, Zhang SL, Heng PA (2009) Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks. IEEE Trans Automatic Control 54(6):1341–1347

    Article  MathSciNet  Google Scholar 

  21. Zhang L, Yi Z, Yu J (2008) Multiperiodicity and attractivity of delayed recurrent neural networks with unsaturating piecewise linear transfer functions. IEEE Trans Neural Netw 19(1):158–167

    Article  Google Scholar 

  22. Zhang L, Yi Z (2011) Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function. IEEE Trans Neural Netw 22(7):1021–1031

    Article  Google Scholar 

  23. Retter H (1990) A spatial approach for feature linking. Proc Int Neural Netw Conf 2:898–901

    Google Scholar 

  24. Wersing H, Steil JJ, Ritter H (2001) A competitive layer model for feature binding and sensory segmentation. Neural Comput 13(2):357–387

    Article  MATH  Google Scholar 

  25. Weng S, Wersing H, Steil JJ, Ritter H (2006) Learning lateral interactions for feature binding and sensory segmentation from prototypic basis interactions. IEEE Trans Neural Netw 17(4):843–862

    Article  Google Scholar 

  26. Voultsidou M, Dodel S, Herrmann JM (2005) Neural networks approach to clustering of activity in fMRI data. IEEE Trans Med Imaging 24:987–996

    Article  Google Scholar 

  27. Yi Z (2010) Foundations of implementing the competitive layer model by Lotka–Volterra recurrent neural networks. IEEE Trans Neural Netw 21:494–507

    Article  Google Scholar 

  28. Buxton R, Wong E, Frank L (1998) Dynamic of blood flow and oxygenation change during brain activation: the Balloon model. Magn Reson Med 39(6):855–864

    Article  Google Scholar 

  29. Friston K, Mechelli A, Turner R, Price C (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12(4):466–477

    Article  Google Scholar 

  30. Ashburner J, Chen C, Flandin G, Henson R, Kiebel S, Kilner J, Litvak V, Moran R, Penny W, Stephan K, Hutton C, Glauche V, Mattout J, Phillips C (2009) SPM8 manual. The FIL Methods Group, Institute of Neurology UCL. http://www.fil.ion.ucl.ac.uk/spm/data/

  31. Ardekani BA, Kanno I (1998) Statistical methods for detecting activated regions in functional MRI of the brain. Magn Reson Imaging 16(10):1217–1225

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the reviewers for their valuable comments and helpful suggestions. This work was supported by the National Science Foundation of China under Grant 60931160441. And this work was also partly supported by the Scientific Research Fund of SiChuan Provincial Education Department (12ZA172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, B., Yi, Z. Using competitive layer model implemented by Lotka–Volterra recurrent neural networks for detecting brain activated regions from fMRI data. Neural Comput & Applic 22 (Suppl 1), 395–404 (2013). https://doi.org/10.1007/s00521-012-0972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0972-8

Keywords

Navigation