Skip to main content

Advertisement

Log in

Application of covariance matrix adaptation–evolution strategy to optimal control of hepatitis B infection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To avoid the cirrhosis and liver cancer, antiviral treatment for chronic hepatitis is necessary. In the literature, several mathematical models have been used to describe the dynamics of viral infections. In addition, several control strategies have been reported in the literature to deal with optimal antiviral therapy problem of infectious diseases. In this paper, three controller structures with optimized parameters using covariance matrix adaptation–evolution strategy algorithm are proposed for optimal control of basic hepatitis B virus (HBV) infection dynamical system. The first structure is an optimized neural-type sigmoid-based closed-loop controller, which is a nonlinear feedback controller. The second structure is an optimized open-loop time-based fuzzy controller in which the control input is approximated using the mixture of Gaussian membership functions. Finally, an optimized closed-loop fuzzy controller is used as the third control structure. After designing the controllers, some parameters of the HBV infection model are considered to be unknown and the robustness of the controllers is studied. Experimental results show that the optimized neural-type sigmoid-based closed-loop controller has the best performance in terms of healthy hepatocytes and free HBVs concentration among the investigated controllers and the optimized closed-loop fuzzy controller is the best in terms of minimum mean control input signal that is the drug usage. Concerning the robustness, the optimized neural-type sigmoid-based closed-loop controller has the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Robinson WS (1994) Hepatitis B viruses. General features (human). In: Webster RG, Granoff A (eds) Encyclopedia of virology. Academic Press, London, pp 554–569

    Google Scholar 

  2. Robinson WS (1995) Hepatitis B virus and hepatitis D virus. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 4th edn. Churchill Livingstone, New York, pp 1406–1439

    Google Scholar 

  3. Ganem D, Schneider RJ (2001) Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B et al (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2923–2969

    Google Scholar 

  4. Wong VWS, Wong GLH, Chu WCW, Chim AML, Ong A, Yeung DKW, Yiu KKL, Chu SHT, Chan HY, Woo J, Chan FKL, Chan HLY (2012) Hepatitis B virus infection and fatty liver in the general population. J Hepatol 56:533–540

    Article  Google Scholar 

  5. Mahoney FJ, Kane M (1999) Hepatitis B vaccine. In: Plotkin SA, Orenstein WA (eds) Vaccines, 3rd edn. WB Saunders Company, Philadelphia, pp 158–182

    Google Scholar 

  6. Pan CQ, Duan ZP, Bhamidimarri KR, Zou HB, Liang XF, Li J, Tong MJ (2011) An algorithm for risk assessment and intervention of mother to child transmission of hepatitis B virus. Clin Gastroenterol Hepatol. doi:10.1016/j.cgh.2011.10.041. Available online 9 Nov 2011

  7. Kapoor A, Bhatia V, Gopalan S, Sibal A (2011) Hepatitis B in children-current status. Apollo Med 8:287–293

    Article  Google Scholar 

  8. World Health Organization (2008) Hepatitis B. Who is most at risk for chronic disease? Available at: http://www.who.int/mediacentre/factsheets/fs204/en/, accessed 30 Mar 2012

  9. Michelin A, Henderson DK (2010) Infection control guidelines for prevention of health care-associated transmission of hepatitis B and C viruses. Clin Liver Dis 14:119–136

    Article  Google Scholar 

  10. World Health Organization (2008) Hepatitis B. Transmission. Available at: http://www.who.int/mediacentre/factsheets/fs204/en/, accessed 30 Mar 2012

  11. Delfino CM, Berini C, Eirin ME, Malan R, Pedrozo W, Krupp R, Blejer J, Espejo R, Fierro L, Puca A, Oubiña JR, Mathet VL, Biglione MM (2012) New natural variants of hepatitis B virus among Amerindians from Argentina with mainly occult infections. J Clini Virol. doi:10.1016/j.jcv.2012.02.023. Available online 22 Mar 2012

  12. Ganem D, Prince AM (2004) Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med 350:1118–1129

    Article  Google Scholar 

  13. Romano’ L, Paladini S, Van Damme P, Zanetti AR (2011) The worldwide impact of vaccination on the control and protection of viral hepatitis B. Dig Liver Dis 43(Supplement 1):S2–S7

    Article  Google Scholar 

  14. Huang LM, Lu CY, Chen DS (2011) Hepatitis B virus infection, its sequel, and prevention by vaccination. Curr Opin Immunol 23:237–243

    Article  Google Scholar 

  15. Lok ASF, McMahon BJ (2001) Chronic hepatitis B. Hepatology 34:1225–1241

    Article  Google Scholar 

  16. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML et al (2003) Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 348:808–816

    Article  Google Scholar 

  17. Piccolo P, Lenci I, Demelia L, Bandiera F, Piras MR, Antonucci G et al (2009) A randomized controlled trial of pegylated interferon-alpha2a plus adefovir dipivoxil for hepatitis B e antigen-negative chronic hepatitis B. Antivir Ther 14:1165–1174

    Article  Google Scholar 

  18. Matthews SJ (2006) Entecavir for the treatment of chronic hepatitis B virus infection. Clin Ther 28:184–203

    Article  MathSciNet  Google Scholar 

  19. Lai CL, Gane E, Liaw YF, Hsu CW, Thongsawat S, Wang Y et al (2007) Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med 357:2576–2588

    Article  Google Scholar 

  20. Woo G, Tomlinson G, Nishikawa Y, Kowgier M, Sherman M, Wong DK et al (2010) Tenofovir and entecavir are the most effective antiviral agents for chronic hepatitis B: a systematic review and Bayesian meta-analyses. Gastroenterology 139:1218–1229

    Article  Google Scholar 

  21. Lai CL, Yuen MF (2007) The natural history and treatment of chronic hepatitis B: a critical evaluation of standard treatment criteria and end points. Ann Intern Med 147:58–61

    Article  Google Scholar 

  22. Nowak M, May R (2001) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, New York

    Google Scholar 

  23. Wodarz D, Nowak M (2002) Mathematical models of HIV pathogenesis and treatment. BioEssays 24:1178–1187

    Article  Google Scholar 

  24. Landi A, Mazzoldi A, Andreoni C, Bianchi M, Cavallini A, Laurino M, Ricotti L, Iuliano R, Matteoli B, Ceccherini-Nelli L (2008) Modeling and control of HIV dynamics. Comput Methods Prog Biomed 89:162–168

    Article  Google Scholar 

  25. Perelson AS (2002) Modeling viral and immune system dynamics. Nat Rev Immunol 2:28–36

    Article  Google Scholar 

  26. Wodarz D (2003) Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J Gen Virol 84:1743–1750

    Article  Google Scholar 

  27. Perelson AS, Hermmann E, Micol F, Zeuzem S (2005) New kinetic models for the hepatitis C virus. Hepatology 42:749–754

    Article  Google Scholar 

  28. Debroy S (2010) Evaluating treatment of hepatitis C for hemolytic anemia management. Math Biosci 225:141–155

    Article  MathSciNet  MATH  Google Scholar 

  29. Yasini S, Naghibi-Sistani MB, Karimpour A (2008) Active insulin infusion using fuzzy-based closed-loop control. In: Proceedings of the international conference on intelligent systems and knowledge engineering, pp 429–434

  30. Coban R (2011) A fuzzy controller design for nuclear research reactors using the particle swarm optimization algorithm. Nucl Eng Des 241:1899–1908

    Article  Google Scholar 

  31. Frantti T (2012) Expert system for open-loop power control of wireless local area networks. Expert Syst Appl. doi:10.1016/j.eswa.2012.02.105. Available online 19 Feb 2012

  32. Jagodnik KM, van den Bogert AJ (2010) Optimization and evaluation of a proportional derivative controller for planar arm movement. J Biomech 43:1086–1091

    Article  Google Scholar 

  33. Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng Appl Artif Intell 25:430–442

    Article  Google Scholar 

  34. Oh SK, Kim WD, Pedrycz W (2012) Design of optimized cascade fuzzy controller based on differential evolution: simulation studies and practical insights. Eng Appl Artif Intell 25:520–532

    Article  Google Scholar 

  35. Meidanshahi V, Karimi G (2012) Dynamic modeling, optimization and control of power density in a PEM fuel cell. Appl Energy 93:98–105

    Article  Google Scholar 

  36. Kumbasar T, Eksin I, Guzelkaya M, Yesil E (2011) Adaptive fuzzy model based inverse controller design using BB-BC optimization algorithm. Expert Syst Appl 38:12356–12364

    Article  Google Scholar 

  37. Oh SK, Jang HJ, Pedrycz W (2011) Optimized fuzzy PD cascade controller: a comparative analysis and design. Simul Model Pract Theory 19:181–195

    Article  Google Scholar 

  38. Oh SK, Jang HJ, Pedrycz W (2011) A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Syst Appl 38:11217–11229

    Article  Google Scholar 

  39. Cococcioni M, Lazzerini B, Marcelloni F (2011) On reducing computational overhead in multi-objective genetic Takagi–Sugeno fuzzy systems. Appl Soft Comput 11:675–688

    Article  Google Scholar 

  40. Pan I, Das S, Gupta A (2011) Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of PIλDμ controllers with evolutionary algorithms. ISA Trans 50:557–572

    Article  Google Scholar 

  41. Das S, Pan I, Das S, Gupta A (2012) Improved model reduction and tuning of fractional-order PIλDμ controllers for analytical rule extraction with genetic programming. ISA Trans 51:237–261

    Article  Google Scholar 

  42. dos Santos Coelho L, Wicthoff Pessôa M (2011) A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map. Expert Syst Appl 38:13694–13701

    Google Scholar 

  43. Sundareswaran K, Srinivasarao Nayak P (2012) Ant colony based feedback controller design for soft-starter fed induction motor drive. Appl Soft Comput 12:1566–1573

    Article  Google Scholar 

  44. Sheikhan M, Shahnazi R, Hemmati E (2012) Adaptive active queue management controller for TCP communication networks using PSO–RBF models. Neural Comput Appl. doi:10.1007/s00521-011-0786-0. Available online 4 Jan 2012

  45. Sheikhan M, Shahnazi R, Garoucy S (2011) Hyperchaos synchronization using PSO-optimized RBF-based controllers to improve security of communication systems. Neural Comput Appl. doi:10.1007/s00521-011-0774-4. Available online 16 Dec 2011

  46. Sheikhan M, Shahnazi R, Garoucy S (2011) Synchronization of general chaotic systems using neural controllers with application to secure communication. Neural Comput Appl. doi:10.1007/s00521-011-0697-0. Available online 19 Jul 2011

  47. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9:159–195

    Article  Google Scholar 

  48. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA–ES). Evol Comput 11:1–18

    Article  Google Scholar 

  49. Bledsoe KC, Favorite JA, Aldemir T (2011) A comparison of the covariance matrix adaptation evolution strategy and the Levenberg–Marquardt method for solving multidimensional inverse transport problems. Ann Nucl Energy 38:897–904

    Article  Google Scholar 

  50. Chu W, Gao X, Sorooshian S (2011) A new evolutionary search strategy for global optimization of high-dimensional problems. Inf Sci 181:4909–4927

    Article  Google Scholar 

  51. Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216:33–46

    Article  MathSciNet  MATH  Google Scholar 

  52. Kämpf JH, Robinson D (2009) A hybrid CMA–ES and HDE optimization algorithm with application to solar energy potential. Appl Soft Comput 9:738–745

    Article  Google Scholar 

  53. Baskar S, Suganthan PN, Ngo NQ, Alphones A, Zheng RT (2006) Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm. Opt Commun 260:716–722

    Article  Google Scholar 

  54. Hou S, Li Y (2009) Short-term fault prediction based on support vector machines with parameter optimization by evolution strategy. Expert Syst Appl 36:12383–12391

    Article  Google Scholar 

  55. Villasana M, Ochoa G, Aguilar S (2010) Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy. Artif Intell Med 50:163–173

    Article  Google Scholar 

  56. Ghosh S, Das S, Roy S, Minhazul Islam SK, Suganthan PN (2012) A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Inf Sci 182:199–219

    Article  MathSciNet  Google Scholar 

  57. Piotrowski AP, Rowinski PM, Napiorkowski JJ (2012) Comparison of evolutionary computation techniques for noise injected neural network training to estimate longitudinal dispersion coefficients in rivers. Expert Syst Appl 39:1354–1361

    Article  Google Scholar 

  58. Iruthayarajan MW, Baskar S (2010) Covariance matrix adaptation evolution strategy based design of centralized PID controller. Expert Syst Appl 37:5775–5781

    Article  Google Scholar 

  59. Nowak M, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, Mc Dade H (1996) Viral dynamics in hepatitis B infection. Proc of Natl Acad Sci USA 93:4398–4402

    Article  Google Scholar 

  60. Le Guerhier F, Thermet A, Guerret S, Chevallier M, Jamard C, Gibbs CS, Trépo C, Cova L, Zoulim F (2003) Antiviral effect of adefovir in combination with a DNA vaccine in the duck hepatitis B virus infection model. J Hepatol 38:328–334

    Article  Google Scholar 

  61. Ciupe SM, Ribeiro RM, Nelson PW, Perelson AS (2007) Modeling the mechanisms of acute hepatitis B virus infection. J Theor Biol 247:23–35

    Article  MathSciNet  Google Scholar 

  62. Thornley S, Bullen C, Roberts M (2008) Hepatitis B in a high prevalence New Zealand population: a mathematical model applied to infection control policy. J Theor Biol 254:599–603

    Article  MathSciNet  Google Scholar 

  63. Qiao M, Qi H (2009) Dynamics of the HBV model with diffusion and time delay. In: Proceedings of the international workshop on chaos-fractals theories and applications, pp 297–300

  64. Qiao M, Qi H, Chen Y (2011) Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay. Acta Math Sci 31:1020–1034

    Article  MathSciNet  MATH  Google Scholar 

  65. Luzyanina T, Bocharov G (2011) Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection. Math Comput Simul. doi:10.1016/j.matcom.2011.10.002. Available online 14 Oct 2011

  66. Pang J, Cui JA, Zhou X (2010) Dynamical behavior of a hepatitis B virus transmission model with vaccination. J Theor Biol 265:572–578

    Article  MathSciNet  Google Scholar 

  67. Zhang S, Zhou Y (2012) The analysis and application of an HBV model. Appl Math Model 36:1302–1312

    Article  MathSciNet  MATH  Google Scholar 

  68. Nakabayashi J, Sasaki A (2011) A mathematical model of the intracellular replication and within host evolution of hepatitis type B virus: understanding the long time course of chronic hepatitis. J Theor Biol 269:318–329

    Article  MathSciNet  Google Scholar 

  69. Hollinger F, Lau D (2006) Hepatitis B: the pathway to recovery through treatment. Gastroenterol Clin N Am 35:895–931

    Article  Google Scholar 

  70. Medley GF, Lindop NA, Edmunds WJ, Nokes DJ (2001) Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nat Med 7:619–624

    Article  Google Scholar 

  71. Adams BM, Banks HT, Davidian M, Kwon H, Tran HT, Wynne SN, Rosenberg ES (2005) HIV dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184:10–49

    Article  MathSciNet  MATH  Google Scholar 

  72. Costanza V, Rivadeneira PS, Biafore FL, D’Attellis CE (2009) A closed-loop approach to antiretroviral therapies for HIV infection. Biomed Signal Process Control 4:139–148

    Article  Google Scholar 

  73. Zurakowski R, Teel AR (2006) A model predictive control based scheduling method for HIV therapy. J Theor Biol 238:368–382

    Article  MathSciNet  Google Scholar 

  74. Pannocchia G, Laurino M, Landi A (2010) A model predictive control strategy toward optimal structured treatment interruptions in anti-HIV therapy. IEEE Trans Biomed Eng 57:1040–1050

    Article  Google Scholar 

  75. Hattaf K, Rachik M, Saadi S, Yousfi N (2009) Optimal control of treatment in a basic virus infection model. Appl Math Sci 3:949–958

    MathSciNet  MATH  Google Scholar 

  76. Ying H (1998) General SISO Takagi–Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans Fuzzy Syst 6:582–587

    Article  Google Scholar 

  77. Beyer HG, Schwefel HP (2002) Evolution strategies: a comprehensive introduction. Nat Comput 1:3–52

    Article  MathSciNet  MATH  Google Scholar 

  78. Kern S, Müller S, Hansen N, Büche D, Ocenasek J, Koumoutsakos P (2004) Learning probability distributions in continuous evolutionary algorithms-a comparative review. Nat Comput 3:77–112

    Article  MathSciNet  MATH  Google Scholar 

  79. Li C, Heinemann PH (2007) A comparative study of three evolutionary algorithms for surface acoustic wave sensor wavelength selection. Sens Actuators B Chem 125:311–320

    Article  Google Scholar 

  80. Hansen N, Ros R, Mauny N, Schoenauer M, Auger A (2011) Impacts of invariance in search: when CMA–ES and PSO face ill-conditioned and non-separable problems. Appl Soft Comput 11:5755–5769

    Article  Google Scholar 

  81. Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the IEEE conference on evolutionary computation, pp 312–317

  82. Jastrebski GA, Arnold DV (2006) Improving evolution strategies through active covariance matrix adaptation. In: Proceedings of the IEEE world congress on computational intelligence, pp 9719–9726

  83. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Yao X et al (eds) Parallel problem solving from nature-PPSN VIII, LNCS 3242. Springer, Berlin, pp 282–291

  84. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evol Comput 15:1–28

    Article  Google Scholar 

  85. Thapar A, Pandey D, Gaur SK (2012) Satisfying solutions of multi-objective fuzzy optimization problems using genetic algorithm. Appl Soft Comput. doi:10.1016/j.asoc.2012.03.002. Available online 13 Mar 2012

  86. Fotakis D, Sidiropoulos E (2012) A new multi-objective self-organizing optimization algorithm (MOSOA) for spatial optimization problems. Appl Math Comput 218:5168–5180

    Article  MathSciNet  MATH  Google Scholar 

  87. de Carvalho AB, Pozo A (2012) Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems. Neurocomputing 75:43–51

    Article  Google Scholar 

  88. Musrrat A, Patrick S, Millie P (2012) An efficient differential evolution based algorithm for solving multi-objective optimization problems. Eur J Oper Res 217:404–416

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Sheikhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikhan, M., Ghoreishi, S.A. Application of covariance matrix adaptation–evolution strategy to optimal control of hepatitis B infection. Neural Comput & Applic 23, 881–894 (2013). https://doi.org/10.1007/s00521-012-1013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1013-3

Keywords