Skip to main content

Advertisement

Log in

Image-based face verification and experiments

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel image-based identity verification method. This method first uses the training images of the claimed identity to represent the testing sample and then exploits the representation result to determine the verification result, that is, accept or reject. The proposed method not only has sound theoretical foundation but also is simple and easy to implement. Moreover, our method greatly outperforms previously image-based identity verification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):1–17

    Google Scholar 

  2. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  3. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  4. Tao D et al (2008) Bayesian tensor approach for 3-D face modelling. IEEE Trans Circuits Syst Video Technol 18(10):1397–1410

    Article  Google Scholar 

  5. Xu Y, Zhang D, Yang J, Jin Z, Yang JY (2011) Evaluate dissimilarity of samples in feature space for improving KPCA. Int J Inform Technol Decis Mak 10(3):479–495

    Article  Google Scholar 

  6. Yang WK, Sun CY, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recogn 44(8):1649–1657

    Article  MATH  Google Scholar 

  7. Xu Y, Zhu Q (2012) A simple and fast representation-based face recognition method. Neural Comput Appl. doi: 10.1007/s00521-012-0833-5

  8. Fan Z, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22(7):1119–1132

    Article  Google Scholar 

  9. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  10. Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30

    Article  Google Scholar 

  11. Bouchaffraa D, Amira A (2008) Structural hidden Markov models for biometrics: fusion of face and fingerprint. Pattern Recogn 41(3):852–867

    Article  Google Scholar 

  12. Jain AK, Pankanti S, Prabhakar S et al (2004) Biometrics: a grand challenge. In: Proceedings of the 17th international conference on pattern recognition (ICPR’04), pp 935–942

  13. Zhang D, Song F, Xu Y, Liang Z (2009) Advanced pattern recognition technologies with applications to biometrics. Medical Information Science Reference, IGI Global

  14. Xu Y, Zhang D, Yang JY (2010) A feature extraction method for use with bimodal biometrics. Pattern Recogn 43:1106–1115

    Article  MATH  Google Scholar 

  15. Jain AK (2006) Biometric recognition: how do I know who you are? ICEIS 1:17–18

    Google Scholar 

  16. Jain AK, Feng J, Nandakumar K (2010) Fingerprint matching. IEEE Comput 43(2):36–44

    Article  Google Scholar 

  17. Zuo WM, Lin ZC, Guo ZH, Zhang D (2010) The multiscale competitive code via sparse representation for palmprint verification. In: CVPR, pp 2265–2272

  18. Yue F, Zuo WM, Zhang D (2010) ICP registration using principal line and orientation features for palmprint alignment. In: ICIP, pp 3069–3072

  19. Wu J, Fukui K (2008) Multiple view based 3D object classification using ensemble learning of local subspaces. In: ICPR, pp 1–4

  20. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  Google Scholar 

  21. Yong X, Zuo W, Fan Z (2011) Supervised sparse presentation method with a heuristic strategy and face recognition experiments. Neurocomputing 79:125–131

    Google Scholar 

  22. Yang WK, Wang JG, Ren MW, Yang JY (2009) Feature extraction based on laplacian bidirectional maximum margin criterion. Pattern Recogn 42(11):2327–2334

    Article  MATH  Google Scholar 

  23. Martinez AM, Benavente R (1998) The AR face database. Technical report number 24

  24. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  25. Lee K-C, Ho J, Kriegman D (2005) Acquiring Linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Sun, C. Image-based face verification and experiments. Neural Comput & Applic 23, 947–956 (2013). https://doi.org/10.1007/s00521-012-1019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1019-x

Keywords