Skip to main content
Log in

Intelligence computation based on adaptive tracking design for a class of non-linear discrete-time systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this article, a direct adaptive neural networks control algorithm is presented for a class of SISO discrete-time systems with non-symmetric dead-zone. The property of the dead-zone is discretized. Mean value theorem is used to transform the systems into a special form. The unknown functions in the input–output model are approximated using the radial basis function neural networks. Compared with the results for the discrete non-symmetric dead-zone, this article presents a new algorithm to reduce the computational burden. Lyapunov analysis method is utilized to prove that all the signals in the closed-loop systems are semi-global uniformly ultimately bounded. The tracking error is proved to converge to a small set around the zero. A simulation example provided to illustrate the effectiveness of the control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang ZS, Zhang HG (2010) Global asymptotic stability of reaction–diffusion Cohen–Grossberg neural networks with continuously distributed delays. IEEE Trans Neural Netw 21(1):39–49

    Article  Google Scholar 

  2. Wang ZS, Zhang HG, Yu W (2009) Robust stability of Cohen–Grossberg neural networks via state transmission matrix. IEEE Trans Neural Netw 20(1):169–174

    Article  Google Scholar 

  3. Zhang HG, Quan YB (2001 Apr) Modeling, identification, and control of a class of nonlinear systems. IEEE Trans Fuzzy Syst 9(2):349–354

    Google Scholar 

  4. Yang C, Ganesh G, Albu-Schaeffer A, Burdet E (2011) Human like adaptation of force and impedance in stable and unstable tasks. IEEE Trans Rob 27(5):918–930

    Article  Google Scholar 

  5. Li Z, Zhang Y, Yang Y (2010) Support vector machine optimal control for mobile wheeled inverted pendulums with unmodelled dynamics. Neurocomputing 73:2773–2782

    Article  Google Scholar 

  6. Chen WS, Jiao LC (2010) Adaptive tracking for periodically time varying and nonlinearly parameterized systems using multilayer neural networks. IEEE Trans Neural Netw 21(2):345–351

    Article  Google Scholar 

  7. Li Z, Chen W (2008) adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng Appl Artif Intell 21(7):985–1000

    Article  Google Scholar 

  8. Chen WS, Jiao LC, Li J, Li RH (2010) Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern-Part B Cybern 40(3):939–950

    Google Scholar 

  9. Tong SC, Li Y, Li YM, Liu YJ (2011) Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans Syst Man Cybern B Cybern 41(6):1693–1704

    Article  MathSciNet  Google Scholar 

  10. Chen WS, Jiao LC, Wu JS (2012) Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput Appl 21(2):351–363

    Article  Google Scholar 

  11. Tong SC, He XL, Zhang HG (2009) A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans Fuzzy Syst 17(5):1059–1069

    Article  Google Scholar 

  12. Li TS, Wang D, Feng G (2010) A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern Part B Cybern 40(3):915–927

    Article  Google Scholar 

  13. Liu YJ, Wang W, Tong SC, Liu YS (2010) Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cybern Part A Syst Hum 40(1):170–184

    Article  Google Scholar 

  14. Liu YJ, Tong SC, Wang D, Li TS, Chen CLP (2011 Aug) Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans Neural Netw 22(8):1328–1334

    Google Scholar 

  15. Chen M, Ge SS, Ren BB (2010) Robust attitude control of helicopters with actuator dynamics using neural networks. IET Control Theory Appl 4(12):2837–2854

    Article  MathSciNet  Google Scholar 

  16. Chen M, Chen WH (2010) Sliding mode controller design for a class of uncertain nonlinear system based on disturbance observer. Int J Adapt Control Signal Process 24(1):51–64

    MATH  Google Scholar 

  17. Li Z, Yang C, Gu J (2007) Neuro-adaptive compliant force/motion control for uncertain constrained wheeled mobile manipulator. Int J Robot Autom 22(3):206–214

    Google Scholar 

  18. Li Z, Chen W, Luo J (2008) Adaptive compliant force-motion control of coordinated nonholonomic mobile manipulators interacting with unknown non-rigid environments. Neurocomputing 71(7–9):1330–1344

    Article  Google Scholar 

  19. Tong SC, Li YM (2009) Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst 160(12):1749–1764

    Article  MathSciNet  MATH  Google Scholar 

  20. Tong SC, Li CY, Li YM (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160(19):2755–2775

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen WS, Jiao LC, Li RH, Li J (2010) Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans Fuzzy Syst 18(4):674–685

    Article  Google Scholar 

  22. Huang YS, Chen X–X, Zhou S-W, Yu L–L, Wang Z-W (2012) HGO-based decentralisd indirect adaptive fuzzy control for a class of large-scale nonlinear systems. Int J Syst Sci 43(6):1133–1145

    Article  MathSciNet  Google Scholar 

  23. Huang YS (2012) Robust decentralized adaptive fuzzy control for a class of large-scale MIMO nonlinear systems. Int J Robust Nonlinear Control. doi:10.1002/rnc.1780, in press

  24. Huang YS, Wu M, He Y, Yu L–L (2012) Decentralized adaptive fuzzy control of large-scale nonaffine nonlinear systems by state and output feedback. Nonlinear Dyn 69(4):1665–1677

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen WS, Jiao LC, Du ZB (2010) Output-feedback adaptive dynamic surface control of stochastic non-linear systems using neural network. IET Control Theory Appl 4(12):3012–3021

    Article  MathSciNet  Google Scholar 

  26. Chen WS, Li JM (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern Part B Cybern 38(1):258–266

    Article  Google Scholar 

  27. Chen WS (2009) Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks. IET Control Theory Appl 3(10):1383–1394

    Article  MathSciNet  Google Scholar 

  28. Li J, Chen WS, Li JM (2011) Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. Int J Robust Nonlinear Control 21(3):452–472

    Article  MATH  Google Scholar 

  29. Tong SC, Liu CL, Li YM (2010) Fuzzy adaptive decentralized control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans Fuzzy Syst 18(5):845–861

    Article  Google Scholar 

  30. Yang C, Li J, Li Z (2012) Optimized adaptive control design and NN based trajectory planning for a class of wheeled inverted pendulum vehicle models. IEEE Trans Syst Man Cybern Part B Cybern. doi:10.1109/TSMCB.2012.2198813

  31. Chen M, Jiang B, Zou J, Feng X (2010) Robust adaptive tracking control of the underwater robot with input nonlinearity using neural networks. Int J Comput Intell Syst 3(5):646–655

    Article  Google Scholar 

  32. Chen M, Ge SS, Ren BB (2011) Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3):452–465

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen M, Ge SS, Ren BB (2010) Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neural Netw 21(5):796–812

    Article  Google Scholar 

  34. Zhou J, Shen XZ (2007) Robust adaptive control of nonlinear uncertain plants with unknown dead-zone. IEE Proc Control Theory Appl 1(1):25–32

    Article  MathSciNet  Google Scholar 

  35. Yang C, Ge SS, Lee TH (2009) Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions. Automatica 45(1):270–276

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang C, Li Y, Ge SS, Lee TH (2010) Adaptive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings. Int J Control 83(10):2020–2133

    Article  MathSciNet  Google Scholar 

  37. Ge SS, Li GY, Lee TH (2003) Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica 39(5):807–819

    Article  MathSciNet  MATH  Google Scholar 

  38. Jagannathan S, Vandegrift MW, Lewis FL (2000) Adaptive fuzzy logic control of discrete-time dynamical systems. Automatica 36(2):229–241

    Article  MathSciNet  MATH  Google Scholar 

  39. Li HX, Deng H (2006) An approximate internal model based neural control for unknown nonlinear discrete processes. IEEE Trans Neural Netw 17(3):659–670

    Article  Google Scholar 

  40. Chen WS (2009) Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. ISA Trans 48:304–311

    Article  Google Scholar 

  41. Yang CG, Ge SS, Xiang C, Chai T, Lee TH (2008) Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw 19(11):873–886

    Google Scholar 

  42. Ge SS, Yang CG, Lee TH (2008) Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans Neural Netw 19(9):1599–1614

    Article  Google Scholar 

  43. Liu YJ, Chen CLP, Wen GX, Tong SC (2011 Jul) Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans Neural Netw 22(7):1162–1167

    Google Scholar 

  44. Zhang YJ, Chai TY, Wang H (2011) A nonlinear control method based on ANFIS and multiple models for a class of nonlinear systems and its application. IEEE Trans Neural Netw 22(11):1783–1795

    Article  Google Scholar 

  45. Zhang HG, Luo YH, Liu DR (2009) Neural network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraint. IEEE Trans Neural Netw 20(9):1490–1503

    Article  Google Scholar 

  46. Tao G, Kokotovic PV (1995) Discrete-time adaptive control of plants with unknown output dead-zones. Automatica 31(2):287–291

    Article  MathSciNet  MATH  Google Scholar 

  47. Campos J, Lewis FL (1999) Deadzone compensation in discrete-time using adaptive fuzzy logic. IEEE Trans Fuzzy Syst 7(6):697–707

    Article  Google Scholar 

  48. Zhang X, Zhang HG, Liu DR, Kim YS (2009) Neural-network-based reinforcement learning controller for nonlinear systems with non-symmetric dead-zone inputs. In: IEEE symposium on adaptive dynamic programming and reinforcement learning, Nashville, pp 124–129

Download references

Acknowledgments

The authors would like to thank the valuable comments and also appreciate the constructive suggestions from the anonymous referees. This research was supported by the Natural Science Foundation of China under Grant 61074014 and 61174017; Supported by Program for Liaoning Excellent Talents in University under grant LJQ2011064 and LJQ2011062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Liu, YJ. & Li, DJ. Intelligence computation based on adaptive tracking design for a class of non-linear discrete-time systems. Neural Comput & Applic 23, 1351–1357 (2013). https://doi.org/10.1007/s00521-012-1080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1080-5

Keywords

Navigation