Skip to main content
Log in

Visualization maps based on SOM to analyze MIMO systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Knowledge extraction from large amounts of data is an effective approach for analysis and monitoring of industrial processes. The self-organizing map (SOM) is a useful method for this purpose, because it is able to discover low-dimensional structures on high-dimensional spaces and produce a mapping on an ordered low-dimensional space that can be visualized and preserves the most important relationships. With the aim to extract knowledge about the dynamics of industrial processes, we define 2D SOM maps that represent dynamic features which are useful for usual tasks in control engineering such as the analysis of the time response, the coupling among variables, or the difficulties in control of MIMO (multiple-input and multiple-output) systems. Those new maps make it possible to discover, increase or confirm knowledge about the system, spanned through the entire operation range. A well-known quadruple-tank MIMO system was used to test the usefulness of these maps. First, we perform an analysis of the theoretical dynamic behaviors obtained from the physical equations of the system. After that, we carry out an analysis of experimental data from an industrial pilot plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abonyi J, Nemeth S, Csaba V, Vesanto PAJ (2003) Process analysis and product quality estimation by self-organizing maps with an application to polyethylene production. Comput Ind 52(3):221–234. doi:10.1016/S0166-3615(03)00128-3

    Article  Google Scholar 

  2. Albertos P, Sala A (2004) Multivariable control systems: an engineering approach. Springer, London

    Google Scholar 

  3. Barreto GA, Araujo AFR (2002) Identification and control of dynamical systems using the self-organizing map. IEEE Trans Neural Netw 15(5):1244–1259. doi:10.1109/TNN.2004.832825

    Article  Google Scholar 

  4. Cho J, Principe JC, Erdogmus D, Motter MA (2006) Modeling and inverse controller design for an unmaned aerial vehicle based on the self-organizing map. IEEE Trans Neural Netw 17(2):445–460. doi:10.1109/TNN.2005.863422

    Article  Google Scholar 

  5. Corona F, Mulas M, Baratti R, Romagnoli J (2010) On the topological modeling and analysis of industrial process data using the som. Comput Chem Eng 34(12):2022–2032. doi:10.1016/j.compchemeng.2010.07.002

    Article  Google Scholar 

  6. Dayal B, MacGregor J (1997) Multi-output process identification. J Process Cont 7(4):269–282

    Article  Google Scholar 

  7. Díaz I, Cuadrado AA, Díez AB, Fuertes JJ, Domínguez M, Prada MA (2009) Visualization of MIMO process dynamics using local dynamic modelling with self organizing maps. In: Palmer-Brown D, Draganova C, Pimenidis E, Mouratidis H (eds) Engineering Applications of Neural Networks, Communications in Computer and Information Science, vol. 43, pp. 119–130. Springer, Berlin Heidelberg (2009). doi:10.1007/978-3-642-03969-0_12

  8. Díaz I, Cuadrado AA, Díez AB, Ojea G (2005) Modelado visual de procesos industriales. Revista Iberoamericana de Automática e Informática Industrial 2(4):101–112

    Google Scholar 

  9. Díaz I, Domínguez M, Cuadrado AA, Fuertes JJ (2008) A new approach to exploratory analysis of system dynamics using SOM. Application to industrial processes. Expert Syst Appl 34(4):2953–2965. doi:10.1016/j.eswa.2007.05.031

    Article  Google Scholar 

  10. Domínguez M, Reguera P, Fuertes JJ, Díaz I, Cuadrado AA (2007) Internet-based remote supervision of industrial processes using self-organizing maps. Eng Appl Artif Intell 20(6):757–765. doi:10.1016/j.engappai.2006.11.017

    Article  Google Scholar 

  11. Eckerson W (1995) Three tier client/server architectures: achieving scalability, performance, and efficiency in client/server applications. Open Inf Syst 3(20):46–50

    Google Scholar 

  12. Fuertes JJ, Domínguez M, Reguera P, Prada MA, Díaz I, Cuadrado AA (2010) Visual dynamic model based on self-organizing maps for supervision and fault detection in industrial processes. Eng Appl Artif Intell 23(1):8–17. doi:10.1016/j.engappai.2009.06.001

    Article  Google Scholar 

  13. Fuertes JJ, Prada MA, Domínguez M, Reguera P, Díaz I, Díez AB (2008) Visualization of dynamic parameters of a multivariable system using Self-organizing maps. In: 17th IFAC World Congress. Seoul. doi:10.3182/20080706-5-KR-1001.01863

  14. Heikkinen M, Hiltunen T, Liukkonen M, Kettunen A, Kuivalainen R, Hiltunen Y (2009) A modelling and optimization system for fluidized bed power plants. Expert Syst Appl 36(7):10,274–10,279. doi:10.1016/j.eswa.2009.01.072

    Article  Google Scholar 

  15. Johansson KH (2000) The quadruple–tank process: a multivariable laboratory process with an adjustable zero. IEEE Transact Control Syst Technol 8(3):456–465

    Article  MathSciNet  Google Scholar 

  16. Kohonen T (1990) The self-organizing map. In: Proceedings of the IEEE 78:1464–1480

  17. Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, New York Inc, Secaucus, NJ

    Book  Google Scholar 

  18. Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE 84(10):1358–84

    Article  Google Scholar 

  19. Kwak S, Lim C, Metzger R Jr, Rodriguez A (1999) Multivariable submarine control system analysis and design using an interactive visualization tool. In: Proc. of the 1999 American Control Conference 5:3427–3431. IEEE

  20. Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Information science and statistics. Springer, New York

    Book  Google Scholar 

  21. Ljung L (2002) Identification for control: simple process models. Proceedings of the 41st IEEE Conference on Decision and Control, 2002 4:4652–4657. doi:10.1109/CDC.2002.1185112

  22. Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Comput Surv 3:1–156

    Google Scholar 

  23. Peng H, Wu J, Inoussa G, Deng Q, Nakano K (2009) Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model. Control Eng Pract 17(1):59–66. doi:10.1016/j.conengprac.2008.05.005

    Article  Google Scholar 

  24. Pölzlbauer G, Dittenbach M, Rauber A (2006) Advanced visualization of self-organizing maps with vector fields. Neural Netw (19):911–922. doi:10.1016/j.neunet.2006.05.013

  25. Principe J, Wang L, Motter M (1998) Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc IEEE 86(11):2240–2258

    Article  Google Scholar 

  26. Skogestad S, Postlethwaite I (1996) Multivariable Feedback Control – Analysis and Design. Wiley, Chichester

    Google Scholar 

  27. Souza LGM, Barreto GA (2010) On building local models for inverse system identification with vector quantization algorithms. Neurocomputing 73(10–12):1993–2005. doi:10.1016/j.neucom.2009.10.021

    Article  Google Scholar 

  28. Tasdemir K, Merényi E (2009) Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Transact Neural Netw 20(4):549–562. doi:10.1109/TNN.2008.2005409

    Article  Google Scholar 

  29. Venkatasubramanian V, Rengaswamy R, Kavuri S, Yin K (2003) A review of process fault detection and diagnosis part III: Process history based methods. Comput Chem Eng 27(3):327–346. doi:10.1016/S0098-1354(02)00162-X

    Article  Google Scholar 

  30. Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2):111–126

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Spanish Ministerio de Ciencia e Innovación (MICINN) and the European FEDER funds under grants DPI2009-13398-C02-01 and DPI2009-13398-C02-02. A. Morán was supported by a grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Fuertes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuertes, J.J., Domínguez, M., Díaz, I. et al. Visualization maps based on SOM to analyze MIMO systems. Neural Comput & Applic 23, 1407–1419 (2013). https://doi.org/10.1007/s00521-012-1090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1090-3

Keywords

Navigation