Skip to main content
Log in

Monotonic type-2 fuzzy neural network and its application to thermal comfort prediction

  • ISNN 2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper studies the monotonic type-2 fuzzy neural network (T2FNN), which can be adopted in many identification and prediction problems where the monotonicity property between the inputs and outputs is required. Sufficient conditions on the parameters of the T2FNN are first presented to ensure the monotonicity between the inputs and outputs. Then, data-driven design model for the monotonic T2FNN is built. Also, under the monotonicity constraints, a hybrid algorithm is provided to optimize the parameters of the monotonic T2FNN. This hybrid algorithm utilizes the constrained least squares method and the penalty function-based gradient descent algorithm to realize reasonable parameter initialization and optimization. At last, an application to the thermal comfort index prediction is given to verify the effectiveness of the monotonic T2FNN. Comparisons with other methods are also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang LX (1994) Adaptive fuzzy system and control: design and stability analysis. Prentice-Hall, New Jersy

    Google Scholar 

  2. Jang JR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice-Hall, New Jersy

    Google Scholar 

  3. Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–684

    Article  Google Scholar 

  4. Wu S, Er MJ (2000) Dynamic fuzzy neural networks—a novel approach to function approximation. IEEE Trans Syst Man Cybern B 30(2):358–364

    Article  Google Scholar 

  5. Lin D, Wang X, Nian F, Zhang Y (2010) Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16–18):2873–2881

    Article  Google Scholar 

  6. Pratama M, Er MJ, Li X, et al (2011) Genetic dynamic fuzzy neural network (GDFNN) for nonlinear system identification. Lect Notes Comput Sci 6676/2011:525–534

    Article  Google Scholar 

  7. Han H, Qiao J (2010) A self-organizing fuzzy neural network based on a growing-and-pruning algorithm. IEEE Trans Fuzzy Syst 18(6):1129–1143

    Article  Google Scholar 

  8. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—1. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  9. Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, New Jersy

    Google Scholar 

  10. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  11. Juang CF, Hsu CH (2009) Reinforcement ant optimized fuzzy controller for mobile robot wall following control. IEEE Trans Ind Electron 56(10):3931–3940

    Article  Google Scholar 

  12. Begian M, Melek W, Mendel JM (2008) Stability analysis of type-2 fuzzy systems. In: Proceedings of 2008 IEEE international conference on fuzzy systems, pp 947–953

  13. Li C, Yi J, Wang T (2011) Encoding prior knowledge into data driven design of interval type-2 fuzzy logic systems. Int J Innov Comput Inf Control 7(3):1133–1144

    Google Scholar 

  14. Li C, Yi J (2010) SIRMs based interval type-2 fuzzy inference systems: properties and application. Int J Innov Comput Inf Control 6(9):4019–4028

    Google Scholar 

  15. Wang CH, Cheng CS, Lee TT (2004) Dynamical optimal training for interval type-2 fuzzy neural network. IEEE Trans Syst Man Cybern 34(3):1462–1477

    Article  Google Scholar 

  16. Hagras H (2006) Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans Syst Man Cybern 36(5):1206–1209

    Article  Google Scholar 

  17. Lee CH, Hong JL, Lin YC, Lai WY (2003) Type-2 fuzzy neural network systems and learning. Int J Comput Cognit 1(4):79–90

    Google Scholar 

  18. Juang CF, Tsao YW (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1424

    Article  Google Scholar 

  19. Juang CF, Lin YY, Huang RB (2011) Dynamic system modeling using a recurrent interval-valued fuzzy neural network and its hardware implementation. Fuzzy Set Syst 179:83–99

    Article  MathSciNet  MATH  Google Scholar 

  20. Contreras RJ, Vellasco M, Tanscheit R (2011) Hierarchical type-2 neuro-fuzzy BSP model. Inf Sci 181:3210–3224

    Google Scholar 

  21. Aliev RA, Pedrycz W, Guirimov BG, et al. (2011) Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization. Inf Sci 181:1591–1608

    Article  MathSciNet  Google Scholar 

  22. Lin FJ, Shieh PH, Hung YC (2008) An intelligent control for linear ultrasonic motor using interval type-2 fuzzy neural network. IET Electr Power Appl 2(1):32–41

    Article  Google Scholar 

  23. Li C, Yi J, Zhao D (2008) Interval type-2 fuzzy neural network controller (IT2FNNC) and its application to a coupled-tank liquid-level control system. In: Proceedings of 3rd international conference on innovative computing information and control, pp 508–511

  24. Li C, Yi J, Yu Y, Zhao D (2010) Inverse control of cable-driven parallel mechanism using type-2 fuzzy neural network. Acta Autom Sinica 36(3):459–464

    Article  Google Scholar 

  25. Abiyev RH, Kaynak O (2010) Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans Ind Electron 57(12):4147–4159

    Article  Google Scholar 

  26. Tu CC, Juang CF (2012) Recurrent type-2 fuzzy neural network using haar wavelet energy and entropy features for speech detection in noisy environments. Expert Syst Appl 39:2479–2488

    Article  Google Scholar 

  27. Chen CS, Lin WC (2011) Self-adaptive interval type-2 neural fuzzy network control for PMLSM drives. Expert Syst Appl 38:14679–14689

    Article  Google Scholar 

  28. Abiyev RH, Kaynak O, Alshanableh T, Mamedov F (2011) A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl Soft Comput 11:1396–1406

    Article  Google Scholar 

  29. Lindskog P, Ljung L (2000) Ensuring monotonic gain characteristics in estimated models by fuzzy model structures. Automatica 36:311–317

    Article  MathSciNet  MATH  Google Scholar 

  30. Won JM, Park SY, Lee JS (2002) Parameter conditions for monotonic Takagi-Sugeno-Kang fuzzy system. Fuzzy Set Syst 132:135–146

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu CJ, Sung AH (1996) A general purpose fuzzy controller for monotone functions. IEEE Trans Syst Man Cybern B 26(5):803–808

    Article  Google Scholar 

  32. Wu CJ (1997) Guaranteed accurate fuzzy controllers for monotone functions. Fuzzy Set Syst 92:71–82

    Article  MATH  Google Scholar 

  33. Zhao H, Zhu C (2000) Monotone fuzzy control method and its control performance. In: Proceedings of 2000 IEEE international conference on system, man, cybernetics, pp 3740–3745

  34. Koo K, Won JM, Lee JS (2004) Least squares identification of monotonic fuzzy systems. In: Proceedings of annual meeting of the North American fuzzy Information Processing Society (NAFIPS), pp 745–749

  35. Seki H, Ishii H, Mizumoto M (2007) On the monotonicity of single input type fuzzy reasoning methods. IEICE Trans Fundam E90-A(7):1462–1468

    Article  Google Scholar 

  36. Broekhoven EV, Baets BD (2008) Monotone Mamdani–Assilian models under mean of maxima defuzzification. Fuzzy Set Syst 159(21):2819–2844

    Article  MATH  Google Scholar 

  37. Li C, Zhang G, Yi J, Wang T (2011) On the properties of SIRMs connected type-1 and type-2 fuzzy inference systems. In: Proceedings of 2011 IEEE international conference on fuzzy systems, pp 1982–1988

  38. Li C, Yi J, Zhao D (2009) Analysis and design of monotonic type-2 fuzzy inference systems. In: Proceedings of 2009 IEEE international conference on fuzzy systems, pp 1193–1198

  39. Nelles O (2001) Nonlinear system identification. Springer, Berlin

    Book  MATH  Google Scholar 

  40. Fanger PO (1970) Thermal comfort: analysis and applications in environmental engineering. McGraw-Hill, New York

    Google Scholar 

  41. Atthajariyakul S, Leephakpreeda T (2005) Neural computing thermal comfort index for HVAC systems. Energ Convers Manage 46:2553–2565

    Article  Google Scholar 

  42. Ma B, Shu J, Wang Y (2011) Experimental design and the GA-BP prediction of human thermal comfort index. In: Proceedings of the 2011 seventh international conference on natural computation, pp 771–775

  43. Chen K, Jiao Y, Lee ES (2006) Fuzzy adaptive networks in thermal comfort. Appl Math Lett 19:420–426

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61105077, 61273149, 61074149 and 61273326), and the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (BS2012DX026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Yi, J., Wang, M. et al. Monotonic type-2 fuzzy neural network and its application to thermal comfort prediction. Neural Comput & Applic 23, 1987–1998 (2013). https://doi.org/10.1007/s00521-012-1140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1140-x

Keywords

Navigation