Skip to main content
Log in

Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Slotine JJE, Li WP (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Huang YJ, Kuo TC, Chang SH (2008) Adaptive sliding mode control for nonlinear systems with uncertain parameters. IEEE Trans Syst Man Cybern Pt B 38(2):534–539

    Article  Google Scholar 

  3. Chen M, Jiang B, Jiang CS, Wu QX (2010) Robust control for a class of time-delay uncertain nonlinear systems based on sliding mode observer. Neural Comput Appl 19(7):945–951

    Article  Google Scholar 

  4. Kung CC, Su KH (2005) Adaptive fuzzy position control for electrical servo drive via total sliding-mode technique. IEE Proc Electr Power Appl 152(6):1489–1502

    Article  Google Scholar 

  5. Wai RJ, Tu CH (2007) Design of total sliding-mode-based genetic algorithm control for hybrid resonant-driven linear piezoelectric ceramic motor. IEEE Trans Power Electr 22(2):563–575

    Article  Google Scholar 

  6. Wai RJ, Chuang KL, Lee JD (2010) On-line supervisory control design for maglev transportation system via total sliding-mode approach and particle swarm optimization. IEEE Trans Autom Control 55(7):1544–1559

    Article  MathSciNet  Google Scholar 

  7. Yeh MF (2007) Single-input CMAC control system. Neurocomputing 70(16):2638–2644

    Article  Google Scholar 

  8. Cheng KH (2009) Auto-structuring fuzzy neural system for intelligent control. J Franklin Inst 346(3):267–288

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin CM, Leng CH, Hsu CF, Chen CH (2009) Robust neural network control system design for linear ultrasonic motor. Neural Comput Appl 18(6):567–575

    Article  Google Scholar 

  10. Chiu CH (2010) The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller. IEEE Trans Ind Electr 57(5):1814–1822

    Article  Google Scholar 

  11. Chen CH, Hsu CF (2010) Recurrent wavelet neural backstepping controller design with a smooth compensator. Neural Comput Appl 19(7):1089–1100

    Article  Google Scholar 

  12. Chen W, Jiao LC, Wu J (2012) Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput Appl 21(2):351–363

    Article  Google Scholar 

  13. Lin CT, Lee CSG (1996) Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  14. Lin CJ (2008) An efficient immune-based symbiotic particle swarm optimization learning algorithm for TSK-type neuro-fuzzy networks design. Fuzzy Sets Syst 159(21):2890–2909

    Article  Google Scholar 

  15. Juang CF, Lo C (2008) Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence. Fuzzy Sets Syst 159(21):2910–2926

    Article  MathSciNet  Google Scholar 

  16. Mastorocostas P, Varsamis D, Hilas C, Mastorocostas C (2008) A generalized Takagi-Sugeno-Kang recurrent fuzzy-neural filter for adaptive noise cancellation. Neural Comput Appl 17(5):521–529

    Google Scholar 

  17. Engin SN, Kuvulmaz J, Ömurlü VE (2004) Fuzzy control of an ANFIS model representing a nonlinear liquid-level system. Neural Comput Appl 13(3):202–210

    Article  Google Scholar 

  18. Lin FJ, Shen PH, Chou PH, Yang SL (2006) TSK-type recurrent fuzzy network for dsp-based permanent-magnet linear synchronous motor servo drive. IEE Proc Electr Power Appl 153(6):921–931

    Article  Google Scholar 

  19. Chen CS (2010) TSK-type self-organizing recurrent-neural-fuzzy control of linear microstepping motor drives. IEEE Trans Power Electr 25(9):2253–2265

    Article  Google Scholar 

  20. Hsu CF (2012) Intelligent tracking control of a DC motor driver using self-organizing TSK type fuzzy neural networks. Nonlinear Dyn 67(1):587–600

    Article  MATH  Google Scholar 

  21. Lagerholm M, Peterson C, Braccini G, Edenbrandt L, Sornmo L (2000) Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans Biomed Eng 47(7):838–848

    Article  Google Scholar 

  22. Linh TH, Osowski S, Stodolski M (2003) On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans Instrument Meas 52(4):1224–1231

    Article  Google Scholar 

  23. Jiang W, Kong SG (2007) Block-based neural networks for personalized ECG signal classification. Trans Neural Netw 18(6):1750–1761

    Article  Google Scholar 

  24. Wang H, Gu H (2008) Chaotic synchronization in the presence of disturbances based on an orthogonal function neural network. Asian J Control 10(4):470–477

    Article  MathSciNet  Google Scholar 

  25. Lin FJ, Chen SY, Huang MS (2010) Tracking control of thrust active magnetic bearing system via Hermite polynomial-based recurrent neural network. IET Electr Power Appl 4(9):701–714

    Article  Google Scholar 

  26. Lin CM, Hsu CF (2003) Neural network hybrid control for antilock braking systems. IEEE Trans Neural Netw 14(2):351–359

    Article  Google Scholar 

  27. Lin CM, Hsu CF (2004) Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings. IEEE Trans Fuzzy Syst 12(5):733–742

    Article  Google Scholar 

  28. Lu J, Wu X, Han X, Lu J (2007) Adaptive feedback synchronization of a unified chaotic system. Phys Lett A 329(4):327–333

    Google Scholar 

  29. Chen HC, Chang JF, Yan JJ, Liao TL (2008) EP-based PID control design for chaotic synchronization with application in secure communication. Expert Syst Appl 34(2):1169–1177

    Article  Google Scholar 

  30. Wang J, Deng B, Fei X (2008) Synchronization of chaotic neurons coupled with gap junction with time delays in external electrical stimulation. Chaos Solitons Fractals 35(3):512–518

    Article  MathSciNet  MATH  Google Scholar 

  31. Peng YF (2009) Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems. Chaos Solitons Fractals 39(1):150–167

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen YQ, Wang J, Chan WL, Tsang KM (2010) Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control. Nonlinear Dyn 61(4):847–857

    Article  Google Scholar 

  33. Lin TC, Chen MC, Roopaei M (2011) Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Eng Appl Artif Intell 24(1):39–49

    Article  Google Scholar 

  34. Hsu CF, Tsai JZ, Chiu CJ (2012) Chaos synchronization of nonlinear gyros using self-learning PID control approach. Appl Soft Comput 12(1):430–439

    Article  Google Scholar 

  35. Hsu CF, Chung CM, Lin CM, Hsu CY (2009) Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm. Expert Syst with Appl 36(9):11836–11843

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers for their valuable comments. The authors appreciate the partial financial support from the National Science Council of Republic of China under grant NSC 100-2628-E-032-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fei Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CF. Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system. Neural Comput & Applic 22 (Suppl 1), 421–433 (2013). https://doi.org/10.1007/s00521-012-1154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1154-4

Keywords

Navigation