Skip to main content
Log in

Dual iterative adaptive dynamic programming for a class of discrete-time nonlinear systems with time-delays

  • ISNN2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new dual iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for a class of nonlinear systems with time-delays in state and control variables. The idea is to use the dynamic programming theory to solve the expressions of the optimal performance index function and control. Then, the dual iterative ADP algorithm is introduced to obtain the optimal solutions iteratively, where in each iteration, the performance index function and the system states are both updated. Convergence analysis is presented to prove the performance index function to reach the optimum by the proposed method. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the dual iterative ADP algorithm. Simulation examples are given to demonstrate the validity of the proposed optimal control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41(5):779–791

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Tamimi A, Abu-Khalaf M, Lewis FL (2007) Adaptive critic designs for discrete-time zero-sum games with application to \(H_{\infty}\) control. IEEE Trans Syst Cybern Part B Cybern 37(1):240–247

    Article  Google Scholar 

  3. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern Part B Cybern 38(4):943–949

    Article  Google Scholar 

  4. Basin M, Rodriguez-Gonzalez J (2006) Optimal control for linear systems with multiple time delays in control input. IEEE Trans Autom Control 51(1):91–97

    Article  MathSciNet  Google Scholar 

  5. Basin M, Rodriguez-Gonzaleza J, Fridman L (2007) Optimal and robust control for linear state-delay systems. J Franklin Inst 344(7):830–845

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  7. Busoniu L, Ernst D, Schutter BD, Babuska R (2010) Approximate dynamic programming with a fuzzy parameterization. Automatica 46(5):804–814

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao H, Sun W, Shi P (2010) Robust sampled-data \(H_{\infty}\) control for vehicle active suspension systems. IEEE Trans Control Syst Technol 18(1):238–245

    Article  Google Scholar 

  9. Chen Z, Jagannathan S (2008) Generalized Hamilton-Jacobi-Bellman formulation-based neural network control of affine nonlinear discretetime systems. IEEE Trans Neural Netw 19(1):90–106

    Article  Google Scholar 

  10. Chiasson J (2007) Applications of time delay systems. Springer, Berlin

    Book  MATH  Google Scholar 

  11. Halpin SM, Harley KA, Jones RA, Taylor LY (2008) Slope-permissive under-voltage load shed relay for delayed voltage recovery mitigation. IEEE Trans Power Syst 23(3):1211–1216

    Article  Google Scholar 

  12. Han M, Han B, Xi J, Hirasawa K (2006) Universal learning network and its application for nonlinear system with long time delay. Comput Chem Eng 31(1):13–20

    Article  Google Scholar 

  13. Hanselmann T, Noakes L, Zaknich A (2007) Continuous-time adaptive critics. IEEE Trans Neural Netw 18(3):631–647

    Article  Google Scholar 

  14. Ho DWC, Li J, Niu Y (2005) Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Trans Neural Netw 16(3):625–635

    Article  Google Scholar 

  15. Huang X, Ma M (2008) Optimal scheduling for minimum delay in passive star coupled WDM optical networks. IEEE Trans Commun 56(8):1324–1330

    Article  Google Scholar 

  16. Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst Mag 9(3):32–50

    Article  MathSciNet  Google Scholar 

  17. Li T, Tong SC, Feng G (2010) A novel robust adaptive-fuzzy-tracking control for a class of nonlinear multi-input/multi-output systems. IEEE Trans Fuzzy Syst 18(1):150–160

    Article  Google Scholar 

  18. Li T, Wang D, Feng G, Tong SC (2010) A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern Part B Cybern 40(3):915–927

    Article  Google Scholar 

  19. Li T, Feng , Wang D, Tong S (2010) Neural-network-based simple adaptive control of uncertain multi-input multi-output non-linear systems. IET Control Theory Appl 4(9):1543–1557

    Article  MathSciNet  Google Scholar 

  20. Liu D, Zhang Y, Zhang H (2005) A self-learning call admission control scheme for CDMA cellular networks. IEEE Trans Neural Netw 16(5):1219–1228

    Article  Google Scholar 

  21. Malek-Zavarei M, Jashmidi M (1987) Time-delay systems: analysis, optimization and applications. North-Holland, Amsterdam

    MATH  Google Scholar 

  22. Pindyck RS (1992) The distrete-time tracking problem with a time delay in the control. IEEE Trans Autom Control 17(6):397–398

    MathSciNet  Google Scholar 

  23. Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE Trans Syst Man Cybern Part C Appl Rev 32(2):140–153

    Article  Google Scholar 

  24. Prokhorov DV, Wunsch DC (1997) Adaptive critic designs. IEEE Trans Neural Netw 8(5):997–1007

    Article  Google Scholar 

  25. Richard JP (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10):1667–1694

    Article  MathSciNet  MATH  Google Scholar 

  26. Schenato L (2008) Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans Autom Control 53(5):1311–1317

    Article  MathSciNet  Google Scholar 

  27. Si J, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans Neural Netw 12(2):264–276

    Article  MathSciNet  Google Scholar 

  28. Silva GJ (2005) PID Controllers for time-delay systems. Birkhuser, Boston, MA

    MATH  Google Scholar 

  29. Song R, Zhang H, Luo Y, Wei Q (2010) Optimal control laws for time-delay systems with saturating actuators based on heuristic dynamic programming. Neurocomputing 73(16–18):3020–3027

    Article  Google Scholar 

  30. Sun Q, Li Z, Yang J, Luo Y (2010) Load distribution model and voltage static profile of Smart Grid. J Central S Univ Technol 17(4):824–829

    Article  Google Scholar 

  31. Vamvoudakis KG, Lewis FL (2010) Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46(5):878–888

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang D, Liu D, Wei Q (2012) Finite-horizon neuro-optimal tracking control for a class of discrete-time nonlinear systems using adaptive dynamic programming approach. Neurocomputing 78(1):14–22

    Article  Google Scholar 

  33. Wang FY, Jin N, Liu D, Wei Q (2011) Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with \(\epsilon\)-error bound. IEEE Trans Neural Netw 22(1):24–36

    Article  Google Scholar 

  34. Wang FY, Zhang H, Liu D (2009) Adaptive dynamic programming: an introduction. IEEE Comput Intell Mag 4(2):39–47

    Article  Google Scholar 

  35. Watkins C (1989) Learning from delayed rewards. Ph.D. Thesis. Cambridge University, Cambridge

  36. Wei Q, Zhang H, Dai J (2009) Model-free multiobjective approximate dynamic programming for discrete-time nonlinear systems with general performance index functions. Neurocomputing 72(7–9):1839–1848

    Article  Google Scholar 

  37. Werbos PJ (1991) A menu of designs for reinforcement learning over time. In: Miller WT, Sutton RS, Werbos PJ (eds) Neural networks for control. MIT Press, Cambridge, pp 67–95

    Google Scholar 

  38. Werbos PJ (1992) Approximate dynamic programming for real-time control and neural modeling. In: White DA, Sofge DA (eds) Handbook of intelligent control: neural, fuzzy, and adaptive approaches ch. 13.. Van Nostrand Reinhold, New York

    Google Scholar 

  39. Widrow B, Gupta N, Maitra S (1973) Punish/reward: learning with a critic in adaptive threshold systems. IEEE Trans Syst Man Cybern 3:455–465

    Article  MathSciNet  MATH  Google Scholar 

  40. Yadav V, Padhi R, Balakrishnan SN (2007) Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks. IEEE Trans Neural Netw 18(4):1115–1128

    Article  Google Scholar 

  41. Yang Y, Feng G, Ren J (2004) A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern Part A Syst Humans 34(3):406–420

    Article  Google Scholar 

  42. Zhang H, Basin MV, Skliar M (2007) It\(\hat{o}\)-Volterra optimal state estimation with continuous, multirate, randomly sampled, and delayed measurements. IEEE Trans Autom Control 52(3):401–416

    Article  MathSciNet  Google Scholar 

  43. Zhang H, Quan Y (2001) Modeling, identification and control of a class of nonlinear system. IEEE Trans Fuzzy Syst 9(2):349–354

    Article  Google Scholar 

  44. Zhang H, Wang Y, Liu D (2008) Delay-dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays. IEEE Trans Syst Man Cybern Part B Cybern 38(1):125–140

    Article  MATH  Google Scholar 

  45. Zhang H, Wei Q, Luo Y (2008) A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Trans Syst Man Cybern Part B Cybern 38(4):937–942

    Article  Google Scholar 

  46. Zhang H, Wei Q, Liu D (2011) An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games. Automatica 47(1):207–214

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang H, Song R, Wei Q, Zhang T (2011) Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Trans Neural Netw 22(12):1851–1862

    Article  Google Scholar 

  48. Zhang H, Yang D, Chai T (2007) Guaranteed cost networked control for T-S fuzzy systems with time delay. IEEE Trans Syst Man Cybern Part C Appl Rev 37(2):160–172

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 60904037, 60921061, and 61034002, in part by Beijing Natural Science Foundation under Grant 4102061, and in part by China Postdoctoral Science Foundation under Grant 201104162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglai Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Wang, D. & Zhang, D. Dual iterative adaptive dynamic programming for a class of discrete-time nonlinear systems with time-delays. Neural Comput & Applic 23, 1851–1863 (2013). https://doi.org/10.1007/s00521-012-1188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1188-7

Keywords

Navigation