Skip to main content
Log in

Stable optimal control applied to a cylindrical robotic arm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an asymptotically stable optimal control is proposed for the trajectory tracking of a cylindrical robotic arm. The proposed controller uses the linear quadratic regulator method and its Riccati equation is considered as an adaptive function. The tracking error of the proposed controller is guaranteed to be asymptotically stable. A simulation shows the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bachrach J, Beal J, McLurkin J (2010) Composable continuous-space programs for robotic swarms. Neural Comput Appl 19:825–847

    Article  Google Scholar 

  2. Bauernschmitt R, Feuerstein M, Traub J, Schirmbeck EU, Klinker G, Lange R (2007) Optimal port placement and enhanced guidance in robotically assisted cardiac surgery. Surg Endosc 21:684–687

    Article  Google Scholar 

  3. Biess A, Nagurka M, Flash T (2006) Simulation discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices. Biol Cybern 95:31–53

    Article  MATH  MathSciNet  Google Scholar 

  4. Celikkanat H, Sahin E (2010) Steering self-organized robot flocks through externally guided individuals. Neural Comput Appl 19:849–865

    Article  Google Scholar 

  5. Chakraborti T, Sengupta A, Konar A, Janarthanan R (2011) Application of swarm intelligence to a twofold optimization scheme for trajectory planning of a robot arm. In: Lecture notes in computer science, Swarm, Evolutionary and Memetic Computing, vol 7077. Springer, Heidelberg, pp 89–96

  6. Chaoui H, Sicard P (2011) Adaptive Lyapunov-based neural network sensorless control of permanent magnet synchronous machines. Neural Comput Appl 20:717–727

    Article  Google Scholar 

  7. Chen C, Inoue Y, Shibata K (2011) Identification of a golf swing robot using soft computing approach. Neural Comput Appl 20:729–740

    Article  Google Scholar 

  8. Chen CY, Lee CH (2009) Explicit matrix bounds of the solution for the continuous Riccati equation. ICIC Express Lett 3(2):147–152

    Google Scholar 

  9. Chiu C-H (2010) Self-tuning output recurrent cerebellar model articulation controller for a wheeled inverted pendulum control. Neural Comput Appl 19:1153–1164

    Article  MathSciNet  Google Scholar 

  10. Christensen DJ, Campbell J, Stoy K (2010) Anatomy-based organization of morphology and control in self-reconfigurable modular robots. Neural Comput Appl 19:787–805

    Article  Google Scholar 

  11. Eronini I, Umez-Eronini (1998) System dynamics and control. Thomson Learning, ISBN: 970-686-041-X

  12. García D, Schiehlen W (2012) 3D-simulation of human walking by parameter optimization. Arch Appl Mech 82:533–556

    Article  Google Scholar 

  13. Ghiasi AR, Alizadeh G, Mirzaei M (2010) Simultaneous design of optimal gait pattern and controller for a bipedal robot. Multibody Syst Dyn 23:401–429

    Article  MATH  MathSciNet  Google Scholar 

  14. Jang YM, Lee M, Ozawa S (2011) A real-time personal authentication system based on incremental feature extraction and classification of audiovisual information. Evol Syst 2(4):261–272

    Article  Google Scholar 

  15. Jiménez-Lizárraga M, Poznyak A (2006) Near–Nash equilibrium strategies for LQ differential games with inaccurate state information. Math Probl Eng 2006(article ID 21509):1–24

    Article  Google Scholar 

  16. Jiménez-Lizárraga M, Cruz Jose B (2010) New approach to solve algebraic constraints in linear systems using linear dynamical controllers. Int J Innov Comput Inf Control 6(11):4879–4898

    Google Scholar 

  17. Jiménez-Lizárraga M, Poznyak A (2012) Necessary conditions for robust stackelberg equilibrium in a multi-model differential game. Optim Control Appl Methods 33(5):595–613

    Google Scholar 

  18. Koschorreck J, Mombaur K (2012) Modeling and optimal control of human platform diving with somersaults and twists. Optim Eng 13:29–56

    Article  MathSciNet  Google Scholar 

  19. Lee W-P, Yang T-H (2011) Combining GRN modeling and demonstration-based programming for robot control. Neural Comput Appl 20:909–921

    Article  MathSciNet  Google Scholar 

  20. Leite D, Ballini R, Costa P, Gomide F (2012) Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol Syst

  21. Lemos A, Caminhas W, Gomide F (2011) Fuzzy evolving linear regression trees. Evol Syst 2(1):1–14

    Article  Google Scholar 

  22. Leng G, Zeng XJ, Keane JA (2012) An improved approach of self-organizing fuzzy neural network based on similarity measures. Evol Syst

  23. Lewis FL, Syrmos VL (1995) Optimal control, 2nd edn. Wiley, New York, ISBN: 0-471-03378-2

  24. Lewis FL, Dawson DM, Abdallah CT (2004) Control of robot manipulators. Theory and Practice, 2nd edn. Marcel Dekker, Inc., New York, ISBN: 0-8247-4072-6

  25. Rong H-J, Sundararajan N, Huang G-B, Zhao G-S (2011) Extended sequential adaptive fuzzy inference system for classification problems. Evol Syst 2(2):71–82

    Article  Google Scholar 

  26. Rubio JJ, García E, Pacheco J (2011) Trajectory planning and collisions detector for robotic arms. Neural Comput Appl 21(8):2105–2114

    Google Scholar 

  27. Rubio JJ, Torres C, Rivera R, Hernández CA (2011) Comparison of four mathematical models for braking of a motorcycle. IEEE Latin Am Trans 9(5):630–637

    Article  Google Scholar 

  28. Rubio JJ, Vazquez DM, Pacheco J (2010) Backpropagation to train an evolving radial basis function neural network. Evol Syst 1(3):173–180

    Article  Google Scholar 

  29. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York, ISBN: 13-978-0-471-64990-8

  30. Villaverde I, Graña M (2011) Neuro-evolutionary mobile robot egomotion estimation with a 3D ToF camera. Neural Comput Appl 20:345–354

    Article  Google Scholar 

  31. Wu Y, Sun F, Zheng J, Song Q (2010) A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of robotic system. Neural Comput Appl 19:1013–1027

    Article  Google Scholar 

  32. Wu H, Sun F, Sun Z, Wu L (2004) Optimal trajectory planning of a flexible dual-arm space robot with vibration reduction. J Intell Robot Syst 40:147–163

    Article  Google Scholar 

  33. Yin Y, Hosoe S, Zhiwei Luo (2007) A mixed logic dynamical modeling formulation and optimal control of intelligent robots. Optim Eng 8:321–340

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editors and the reviewers for their valuable comments and insightful suggestions, which helped to improve this research significantly. The authors thank the Secretaría de Investigación y Posgrado, Comisión de Operación y Fomento de Actividades Académicas del IPN, and Consejo Nacional de Ciencia y Tecnología for their help in this research. The fourth author would like to thank the financial support through a postdoctoral fellowship from Mexican National Council for Science and Technology (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Jesús Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, C., de Jesús Rubio, J., Aguilar-Ibáñez, C.F. et al. Stable optimal control applied to a cylindrical robotic arm. Neural Comput & Applic 24, 937–944 (2014). https://doi.org/10.1007/s00521-012-1294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1294-6

Keywords

Navigation