Skip to main content
Log in

Application of the fuzzy min–max neural network to fault detection and diagnosis of induction motors

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min–max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator current signatures under different motor conditions. The MCSA method is then used to process the stator current signatures. Specifically, the power spectral density is employed to extract harmonics features for fault detection and classification with the FMM network. Various types of induction motor faults, which include stator winding faults and eccentricity problems, under different load conditions are experimented. The results are analyzed and compared with those from other methods. The outcomes indicate that the proposed technique is effective for fault detection and diagnosis of induction motors under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo Q, Yu H, Hu J, Xu A (2008) A method for condition monitoring and fault diagnosis in electromechanical system. Neural Comput Appl 17(4):373–384

    Article  Google Scholar 

  2. Uyar O, Çunkaş M (2012) Fuzzy logic-based induction motor protection system. Neural Comput Appl. doi:10.1007/s00521-012-0862-0

  3. Almeida AT (2006) Energy using product (EuP) directive preparatory study, lot 11: motors, analysis of existing technical and market information. DG TREN, Brussels

    Google Scholar 

  4. Commission of the European Communities, Full Impact Assessment, C(2009) 5675, SEC(2009) 1014, Brussels

  5. Siddique A, Yadava GS, Singh B (2005) A review of stator fault monitoring techniques of induction motors. IEEE Trans Energy Convers 20(1):106–114

    Article  Google Scholar 

  6. IEEE Motor Reliability Working Group (1985) Report of large motor reliability survey of industrial and commercial installations, Part I. IEEE Trans Ind Appl 4:853–864

    Google Scholar 

  7. Rodríguez PVJ, Negrea M, Arkkioa A (2008) A simplified scheme for induction motor condition monitoring. Mech Syst Signal Process 22(5):1216–1236

    Article  Google Scholar 

  8. Millan-Almaraz JR, Romero-Troncoso RJ, Contreras-Medina LM, Garcia-Perez A (2008) Embedded FPGA based induction motor monitoring system with speed drive fed using multiple wavelet analysis. Int Symp Ind Embed Syst 215–220

  9. Arabacı H, Bilgin O (2010) Automatic detection and classification of rotor cage faults in squirrel cage induction motor. Neural Comput Appl 19(5):713–723

    Article  Google Scholar 

  10. Ballal MS, Khan ZJ, Suryawanshi HM, Sonolikar RL (2007) Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Trans Ind Electron 54(1):250–258

    Article  Google Scholar 

  11. Su H, Chong KT, Kumar RR (2011) Vibration signal analysis for electrical fault detection of induction machine using neural networks. Neural Comput Appl 20(2):183–194

    Article  Google Scholar 

  12. Lee SH, Wang YG, Song JI (2010) Fourier and wavelet transformations application to fault detection of induction motor with stator-current. J Cent South Univ Technol 17:93–101

    Article  Google Scholar 

  13. Benbouzid MEH, Viera M, Theys C (1999) Induction motor’s fault detection and localization using stator current advanced signal processing techniques. IEEE Trans Power Electron 14(1):14–22

    Article  Google Scholar 

  14. Thomson WT, Rankin D, Dorrell DG (1999) On-line current monitoring to diagnose airgap eccentricity in large three-phase induction motors—industrial case histories verify the predictions. IEEE Trans Energy Convers 14(4):1372–1378

    Article  Google Scholar 

  15. Kim K, Parlos AG, Bharadwaj RM (2003) Sensorless fault diagnosis of induction motors. IEEE Trans Ind Electron 50(5):1038–1051

    Article  Google Scholar 

  16. Trutt FC, Sottile J, Kohler JL (2002) Online condition monitoring of induction motors. IEEE Trans Ind Appl 38(6):1627–1632

    Article  Google Scholar 

  17. Pires VF, Martins JF, Pires AJ (2010) Eigenvector/eigenvalue analysis of a 3D current referential fault detection and diagnosis of an induction motor. Energy Convers Manag 51(5):901–907

    Article  Google Scholar 

  18. Bellini A, Filippetti F, Franceschini G, Tassoni C, Passaglia R, Saottini M, Tontini G, Giovannini M, Rossi A (2002) On-field experience with online diagnosis of large induction motors cage failures using MCSA. IEEE Trans Ind Appl 38(4):1045–1053

    Article  Google Scholar 

  19. Tallam RM, Habetler TG, Harley RG (2003) Stator winding turnfault detection for closed-loop induction motor drives. IEEE Trans Ind Appl 39(3):720–724

    Article  Google Scholar 

  20. Ho SL, Lau KM (1995) Detection of faults in induction motors using artificial neural networks. Proc IEE Electr Mach Drives 176–181

  21. Ghate VN, Dudul SV (2011) Cascade neural network based fault classifier for three phase induction motor. IEEE Trans Ind Electron 58(5):1555–1563

    Article  Google Scholar 

  22. Ghate VN, Dudul SV (2010) Optimal MLP neural network classifier for fault detection of three phase induction motor. Expert Syst Appl 37(4):3468–3481

    Article  Google Scholar 

  23. Wu S, Chao TWS (2004) Induction machine fault detection using SOM-based RBF neural networks. IEEE Trans Ind Appl 51(1):183–194

    Google Scholar 

  24. Premrudeepreechacharn S, Utthiyoung T, Kruepengkul K, Puongkaew P (2002) Induction motor fault detection and diagnosis using supervised and unsupervised neural networks. Proc IEEE ICIT, Bangkok, pp 93–96

  25. Su H, Chong KT (2007) Induction machine condition monitoring using neural network modeling. IEEE Trans Ind Electron 54(1):241–249

    Article  Google Scholar 

  26. Da F (2008) Fuzzy neural network sliding mode control for long delay time systems based on fuzzy prediction. Neural Comput Appl 17(5–6):531–539

    Article  Google Scholar 

  27. Rigatos GG (2012) Adaptive fuzzy control for field-oriented induction motor drives. Neural Comput Appl 21(1):9–23

    Article  Google Scholar 

  28. Lopez-Toribio CJ, Patton RJ, Daley S (2000) Takagi–Sugeno fuzzy fault-tolerant control of an induction motor. Neural Comput Appl 9(1):19–28

    Article  Google Scholar 

  29. Simpson PK (1992) Fuzzy min-max neural networks-part 1: classification. IEEE Trans Neural Netw 3(5):776–786

    Article  Google Scholar 

  30. Simpson PK (1993) Fuzzy min-max neural networks—part 2: clustering. IEEE Trans Fuzzy Syst 1(1):32–45

    Article  Google Scholar 

  31. Singh H, Abdullah MZ, Qutieshat A (2011) Detection and classification of electrical supply voltage quality to electrical motors using the fuzzy-min-max neural network. IEEE Electr Mach Drives Conf 2011:961–965

    Google Scholar 

  32. Estevez PA, Flores RJ, Perez CA (2005) Color image segmentation using fuzzy min-max neural networks. IEEE Int Jt Conf Neural Netw 5:3052–3057

    Google Scholar 

  33. Quteishat A, Lim CP, Tweedale J, Jain LC (2009) Authenticating the identity of computer users with typing biometrics and the fuzzy min-max neural network. Int J Biomed Soft Comput Hum Sci 14(1):47–53

    Google Scholar 

  34. Meneganti M, Saviello FS, Tagliaferri R (1998) Fuzzy neural networks for classification and detection of anomalies. IEEE Trans Neural Netw 9(5):848–861

    Article  Google Scholar 

  35. Zhang H, Liu J, Ma D, Wang Z (2011) Data-core-based fuzzy min-max neural network for pattern classification. IEEE Trans Neural Networks 22(12):2339–2352

    Article  Google Scholar 

  36. Rey-del-Castillo P, Cardenosa J (2012) Fuzzy min-max neural networks for categorical data: application to missing data imputation. Neural Comput Appl 21(6):1349–1362

    Article  Google Scholar 

  37. Lynen W (2011) Simulation—an easy way to save time and money. Manufacturing Digital (Nov 2011) White Digital Media 108–123

  38. Ebrahimi BM, Faiz J (2010) Diagnosis and performance analysis of three-phase permanent magnet synchronous motors with static, dynamic and mixed eccentricity. IET Electr Power Appl 1:53–66

    Article  Google Scholar 

  39. The MathWorks Inc (2010) Neural network toolbox 6 user’s guide. Natick, pp 185–186

  40. The MathWorks Inc (2010) Communications toolbox 4 user’s guide. Natick, p 341

  41. Faiz J, Ebrahimi BM (2008) A new pattern for detection of broken rotor bars in induction motors during start-up. IEEE Trans Magn 44(12):4673–4683

    Article  Google Scholar 

  42. Wang H, Butler KL (2001) Finite element analysis of internal winding faults in distribution transformers. IEEE Trans Power Deliv 16(3):422–428

    Article  Google Scholar 

  43. Ebrahimi BM, Faiz J, Lotfi-fard S, Pillay P (2012) Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform. Mech Syst Signal Process 30:131–145

    Article  Google Scholar 

  44. Zhang C, Tseng KJ (2004) Design and FEM analysis of a flywheel energy storage system assisted by integrated magnetic bearings. In: 30th annual conference of IEEE industrial electron society, vol. 2, pp 634–1639

  45. Singla BR, Marwaha S, Marwaha A (2006) Design and transient analysis of cage induction motor using finite element methods. Int Conf Power Electr Drives Energy Syst 1–5

  46. Greconici M, Koch C, Madescu G (2011) Advantages of FEM analysis in electrical machines optimization used in wind energy conversion systems. In: IEEE 3rd international on exploitation renewable energy sources, pp 91–94

  47. Wang X, Xie D (2009) Analysis of induction motor using field-circuit coupled time-periodic finite element method taking account of hysteresis. IEEE Trans Magn 45(3):1740–1743

    Article  Google Scholar 

  48. Ho SL, Shuangxia N, Fu WN (2010) A novel solid-rotor induction motor with skewed slits in radial and axial directions and its performance analysis using finite element method. IEEE Trans Appl Superconduct 20(3):1089–1092

    Article  Google Scholar 

  49. Faiz J, Ebrahimi BM, Toliyat HA, Abu-Elhaija WS (2010) Mixed-fault diagnosis in induction motors considering varying load and broken bars location. Energy Convers Manag 51:1432–1441

    Article  Google Scholar 

  50. Hwang DH, Han SB, Woo BC, Sun JH, Kang DS, Kim BK, Cho YH (2008) Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor. J Appl Phys 103(7):07F131

    Google Scholar 

  51. Ebrahimi BM, Faiz J, Roshtkhari MJ (2009) Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors. IEEE Trans Ind Electron 56(11):4727–4739

    Article  Google Scholar 

  52. Vector Fields Limited (2009) Opera-2d reference manual version 13.0, England

  53. Daut I, Anayet K, Tirapathy S (2009) Design and modeling of induction motor using opera 2D based on aluminum material. In: 3rd international conference energy and environment, pp 94–97

  54. Syatirah MN, Halim NH, Daut I, Yanawati Y, Nor Shafiqin S, Gomesh N, Asri M (2011) Design and modeling of 1-phase induction motor using Opera 2D software based on copper material. In: 5th international, power engineering and optimization conference, pp 193–196

  55. Kohonen T (1984) Self-organization and associative memory. Springer, Berlin

    MATH  Google Scholar 

  56. Herman P, Prasad G, McGinnity TM, Coyle D (2008) Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 16(4):317–326

    Article  Google Scholar 

  57. Yin J, Diduch CP, Chang L (2008) Islanding detection using proportional power spectral density. IEEE Trans Power Deliv 23(2):776–784

    Article  Google Scholar 

  58. Pedra J, Sainz L, Córcoles F (2006) Harmonic modeling of induction motors. Electr Power Syst Res 76:936–944

    Article  Google Scholar 

  59. Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  60. Wehrens R, van der Linden WE (1997) Bootstrapping principal component regression models. J Chemometr 11:57–171

    Google Scholar 

  61. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  62. Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  63. Awadallah MA, Morcos MM (2003) Application of AI tools in fault diagnosis of electrical machines and drives-an overview. IEEE Trans Energy Convers 18(2):245–251

    Article  Google Scholar 

  64. Rosero JA, Cusido J, Garcia A, Ortega JA, Romeral L (2006) Broken bearings and eccentricity fault detection for a permanent magnet synchronous motor. Ind Electr Soc IECON 2006:964–969

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support of the FRGS grants (No. 6711229 and 6711195) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Peng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seera, M., Lim, C.P., Ishak, D. et al. Application of the fuzzy min–max neural network to fault detection and diagnosis of induction motors. Neural Comput & Applic 23 (Suppl 1), 191–200 (2013). https://doi.org/10.1007/s00521-012-1310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1310-x

Keywords

Navigation