Skip to main content
Log in

MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic flow in a nanofluid filled inclined enclosure is investigated numerically using the Control Volume based Finite Element Method. The cold wall of cavity is assumed to mimic a sinusoidal profile with different dimensionless amplitude, and the fluid in the enclosure is a water-based nanofluid containing Cu nanoparticles. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts and Brinkman models, respectively. Numerical simulations were performed for different governing parameters namely the Hartmann number, Rayleigh number, nanoparticle volume fraction and inclination angle of enclosure. The results show that in presence of magnetic field, velocity field retarded, and hence, convection and Nusselt number decreases. At Ra = 103, maximum value of enhancement for low Hartmann number is obtained at γ = 0°, but for higher values of Hartmann number, maximum values of E occurs at γ = 90°. Also, it can be found that for all values of Hartmann number, at Ra = 104 and 105, maximum value of E is obtained at γ = 60° and γ = 0°, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Dimensionless amplitude of the sinusoidal wall

C p :

Specific heat at constant pressure

Gr :

Grashof number

\( \vec{g} \) :

Gravitational acceleration vector

Ha :

Hartmann number \( (=HB_{x} \sqrt {\sigma_{f} /\mu_{f} } ) \)

\( H \) :

Dimensionless width of the enclosure

k :

Thermal conductivity

Nu :

Local Nusselt number

Pr :

Prandtl number (=υ f /α f )

T :

Fluid temperature

u, v :

Velocity components in the x-direction and y-direction

U, V :

Dimensionless velocity components in X-direction and Y-direction

x, y :

Space coordinates

X, Y :

Dimensionless space coordinates

Ra:

Rayleigh number (= f ΔT(H)3/α f υ f )

α :

Thermal diffusivity

μ :

Dynamic viscosity

υ :

Kinematic viscosity

\( \Uptheta \) :

Dimensionless temperature

σ :

Electrical conductivity

ρ :

Fluid density

ϕ :

Volume fraction

γ :

Inclined angle of enclosure

ψ and Ψ :

Stream function and dimensionless stream function

c :

Cold

h :

Hot

ave:

Average

loc:

Local

nf:

Nanofluid

f :

Base fluid

s :

Solid particles

References

  1. Baliga BR (1996) Control-volume finite element methods for fluid flow and heat transfer. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 97–136

  2. Baliga BR, Patankar SV (1983) A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numer Heat Transf 6:245–261

    MATH  Google Scholar 

  3. Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M (2012) Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int Commun Heat Mass Transf 39:565–574

    Google Scholar 

  4. Saidi C, Legay F, Pruent B (1987) Laminar flow past a sinusoidal cavity. Int J Heat Mass Transf 30(4):649–661

    Article  Google Scholar 

  5. Das PK, Mahmud S (2003) Numerical investigation of natural convection inside a wavy enclosure. Int J Therm Sci 42:397–406

    Article  Google Scholar 

  6. Adjlout L, Imine O, Azzi A, Belkadi M (2002) Laminar natural convection in an inclined cavity with a wavy wall. Int J Heat Mass Transf 45:2141–2152

    Article  MATH  Google Scholar 

  7. Pirmohammadi M, Ghassemi M (2009) Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transf 36:776–780

    Article  Google Scholar 

  8. Ashorynejad HR, Mohamad AA, Sheikholeslami M (2013) Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci 64:240–250

    Article  Google Scholar 

  9. Sheikholeslami M, Reza Ashorynejad H, Domairry D, Hashim I (2012) Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method. Sains Malays 41(10):1177–1229

    Google Scholar 

  10. Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33(8):1075–1084

    Article  MATH  Google Scholar 

  11. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  12. Bararnia H, Hooman K, Ganji DD (2011) Natural convection in a nanofluid filled portion cavity; the Lattice-Boltzmann method. Numer Heat Transf A 59:487–502

    Article  Google Scholar 

  13. Ghasemi B, Aminossadati SM (2009) Natural convection heat transfer in an inclined enclosure filled with a water–CuO nanofluid. Numer Heat Transf A Appl 55:807–823

    Article  Google Scholar 

  14. Sheikholeslami M, Soleimani S, Gorji-Bandpy M, Ganji DD, Seyyedi SM (2012) Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int Commun Heat Mass Transf 39:1435–1443

    Google Scholar 

  15. Sheikholeslami M, Gorji-Bandpay M, Ganji DD (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transf 39:978–986

    Article  Google Scholar 

  16. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech Engl Ed 33(1):25–36

    Article  MATH  MathSciNet  Google Scholar 

  17. Sheikholeslami M, Ashorynejad HR, Domairry G, Hashim I (2012) Flow and heat transfer of Cu-water nanofluid between a stretching sheet and a porous surface in a rotating system. J Appl Math, Article ID 421320, 19 pages. Hindawi Publishing Corporation. doi:10.1155/2012/421320

  18. Ashorynejad HR, Sheikholeslami M, Pop I, Ganji DD Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. doi:10.1007/s00231-012-1087-6

  19. Ganji DD (2012) A semi-analytical technique for non-linear settling particle equation of motion. J Hydro Environ Res 6:323–327

    Article  Google Scholar 

  20. De Vahl Davis G (1962) Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Method Fluids 3:249–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D. et al. MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Comput & Applic 24, 873–882 (2014). https://doi.org/10.1007/s00521-012-1316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1316-4

Keywords

Navigation