Skip to main content
Log in

Robust t-distribution mixture modeling via spatially directional information

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Finite mixture model (FMM) has been successfully applied to many practical applications in recent years. However, a significant shortcoming of the FMM with Gaussian distribution is that it is sensitive to noise. Recently, Student’s t-distribution with a heavier-tailed acting as a robust alternative to Gaussian distribution is getting more and more attentions. In this paper, we propose a new Student’s t-distribution finite mixture model which incorporates the spatial relationships between the pixels and simultaneously imposes spatial smoothness. In addition, the pixel’s neighbor directional information is also integrated into the proposed model. Furthermore, the pixels’ label probability proportions are explicitly represented as probability vectors to reduce the computational costs of the proposed model. We use the gradient descend method to estimate the unknown parameters of the proposed model. Comprehensive experiments are conducted on both synthetic and natural grayscale images. The experimental results demonstrate the superiority of the proposed model over some existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  2. Li C, Xu C, Gui G, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254. doi:10.1109/TIP.2010.2096950

    Article  MathSciNet  Google Scholar 

  3. Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts. IEEE Trans Pattern Anal Mach Intell 26(2):147–159

    Article  Google Scholar 

  4. Felzenswalb PF, Zabih R (2011) Dynamic programming and graph algorithms in computer vision. IEEE Trans Pattern Anal Mach Intell 33(4):721–740. doi:10.1109/TPAMI.2010.135

    Article  Google Scholar 

  5. Richard S (2010) Computer vision: algorithms and applications. Springer, New York

    Google Scholar 

  6. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  7. Bishop C (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  8. Dempster P, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc 39:1–38

    MATH  MathSciNet  Google Scholar 

  9. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions,and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  10. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc Ser B 48(3):259C302

    MathSciNet  Google Scholar 

  11. Celeux G, Forbes F, Peyrard N (2003) EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recogn 36(1):131–144. doi:10.1016/S0031-3203(02)00027-4

    Article  MATH  Google Scholar 

  12. Forbes F, Peyrard N (2003) Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans Pattern Anal Mach Intell 25(9):1089C1101. doi:10.1109/TPAMI.2003.1227985

    Article  Google Scholar 

  13. Sanjay GS, Hebert TJ (1998) Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process 7:1014–1028. doi:10.1109/83.701161

    Article  Google Scholar 

  14. Blekas K, Likas A, Galatsanos N, Lagaris I (2005) A spatially constrained mixture model for image segmentation. IEEE Trans Neural Netw 16:494–498. doi:10.1109/TNN.2004.841773

    Article  Google Scholar 

  15. Nikou C, Galatsanos N, Likas A (2007) A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans Image Process 16:1121–1130. doi:10.1109/TIP.2007.891771

    Article  MathSciNet  Google Scholar 

  16. Sfikas G, Nikou C, Galatsanos N, Heinrich C (2010) Spatially varying mixtures incorporating line processes for image segmentation. J Math Imaging Vis 36:91–110. doi:10.1007/s10851-009-0174-x

    Article  MathSciNet  Google Scholar 

  17. Thanh MN, Wu QM (2012) Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans Syst Man Cybern Part B 42:193–202. doi:10.1093/comjnl/bxr032

    Article  Google Scholar 

  18. Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10:335–344. doi:10.1023/A:1008981510081

    Article  Google Scholar 

  19. Sfikas G, Nikou C, Galatsanos N (2007) Robust image segmentation with mixtures of student’s t-distribution. In: IEEE international conference on image processing, pp 273–276

  20. Chatzis SP, Kosmopoulos DI, Varvarigou TA (2008) Signal modeling and classification using a robust latent space model based on t distributions. IEEE Trans Signal Process 56:949–963. doi:10.1109/TSP.2007.907912

    Article  MathSciNet  Google Scholar 

  21. Chatzis SP, Kosmopoulos DI (2011) A variational Bayesian methodology for hidden Markov models utilizing student’s-t mixtures. Pattern Recogn 44:295–306. doi:10.1016/j.patcog.2010.09.001

    Article  MATH  Google Scholar 

  22. Thanh MN, Wu QM (2012) Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans Med Imaging 31:103–116. doi:10.1109/TMI.2011.2165342

    Article  Google Scholar 

  23. Xiong T, Yi Z, Zhang L (2012) Grayscale image segmentation by spatially variant mixture model with student’s t-distribution. Multimed Tools Appl. doi:10.1007/s11042-012-1336-1

  24. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi:10.1109/42.906424

    Article  Google Scholar 

  25. Meila M (2003) Comparing clusterings by the variation of information. Lect Notes Comput Sci 2777:173–187. doi:10.1007/978-3-540-45167-9_14

    Article  Google Scholar 

  26. Meila M (2005) Comparing clusterings—axiomatic view. In: International conference on machine learning, pp 577–584

  27. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of IEEE conference on computer vision (ICCV2001), pp 416–423

  28. Freixenet J, Munoz X, Raba D, Marti J, Cufi X (2002) Yet another survey on image segmentation: region and boundary information integration. In: Proceedings of European conference on computer vision (ECCV2002) 408C422

  29. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29:929–944. doi:10.1109/TPAMI.2007.1046

    Article  Google Scholar 

  30. Svensen M, Bishop C (2005) Robust Bayesian mixture modelling. Neurocomputing 64:235–252. doi:10.1016/j.neucom.-2004.11.018

    Article  Google Scholar 

  31. Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, Hoboken

    MATH  Google Scholar 

  32. Thanh MN, Wu QM, Ahuja S (2010) An extension of the standard mixture model for image segmentation. IEEE Trans Neural Netw 21:1326–1338. doi:10.1109/TNN.2010.2054109

    Article  Google Scholar 

  33. Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  34. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 4:461–464

    Article  Google Scholar 

  35. Winkler G (2006) Image analysis, random fields and Markov chain Monte Carlo methods, ser. stochastic modeling and applied probability, 2nd edn. Springer, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions, which greatly helped to improve the presentation quality of the paper. This work was supported by National Basic Research Program of China (973 Program) under Grant 2011CB302201, and National Nature Science Foundation of China under grant No. 60931160441 and No. 61003042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, T., Zhang, L. & Yi, Z. Robust t-distribution mixture modeling via spatially directional information. Neural Comput & Applic 24, 1269–1283 (2014). https://doi.org/10.1007/s00521-013-1358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1358-2

Keywords

Navigation