Skip to main content
Log in

Adaptive functional-link-based neural fuzzy controller design for a DC gear motor driver

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive functional-link-based neural fuzzy control (AFNFC) system based on complementary sliding-mode approach. The proposed AFNFC system is composed of a neural controller and a robust compensator. The neural controller uses a functional-link-based neural fuzzy system (FNFS) to approximate an ideal complementary sliding-mode controller, and the robust compensator is designed to eliminate the effect of the approximation error between a neural controller and an ideal complementary sliding-mode controller. Since the consequent part of the fuzzy rules in FNFS uses an orthogonal Hermite polynomial-based non-linear combination, the proposed FNFS can approximate an ideal complementary sliding-mode controller with good learning accuracy. Finally, to enhance the control performance of the proposed AFNFC system, a 32-bit ×86-microprocessor is adopted for the implementation of the proposed control system. A comparison among the fuzzy sliding-mode control, the intelligent-complementary sliding-mode control, the supervisory fuzzy neural network control, and the proposed AFNFC system is made. The experimental results demonstrate that the proposed AFNFC system can achieve favorable tracking performance and robust with regard to parameter variations for a DC gear motor driver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Slotine JJE, Li WP (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  2. Choi BJ, Kwak SW, Kim BK (1999) Design of a single-input fuzzy logic controller and its properties. Fuzzy Sets Syst 106(3):299–308

    Article  MathSciNet  MATH  Google Scholar 

  3. Hsu CF, Chung IF, Lin CM, Hsu CY (2009) Self-regulating fuzzy control for forward DC–DC converters using an 8-bit microcontroller. IET Power Electr 2(1):1–13

    Article  Google Scholar 

  4. Chen CH, Hsu CF (2010) Recurrent wavelet neural backstepping controller design with a smooth compensator. Neural Comput Appl 19(7):1089–1100

    Article  Google Scholar 

  5. Chiu CH (2010) The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller. IEEE Trans Ind Electr 57(5):1814–1822

    Article  Google Scholar 

  6. Mon YJ, Lin CM (2012) Supervisory recurrent fuzzy neural network control for vehicle collision avoidance system design. Neural Comput Appl 21(8):2163–2169

    Article  Google Scholar 

  7. Lin CT, Lee CSG (1996) Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  8. Juang CF, Huang ST, Duh FB (2006) Mold temperature control of a rubber injection molding machine by TSK-type recurrent fuzzy network. Neurocomputing 70(1):559–567

    Article  Google Scholar 

  9. Lin CJ (2008) An efficient immune-based symbiotic particle swarm optimization learning algorithm for TSK-type neuro-fuzzy networks design. Fuzzy Sets Syst 159(21):2890–2909

    Article  Google Scholar 

  10. Cheng KH (2009) Auto-structuring fuzzy neural system for intelligent control. J Franklin Inst 346(3):267–288

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen CS (2010) TSK-type self-organizing recurrent-neural-fuzzy control of linear microstepping motor drives. IEEE Trans Power Electr 25(9):2253–2265

    Article  Google Scholar 

  12. Remy GF, Kazemian HB, Picton P (2011) Application of neural-fuzzy controller for streaming video over bluetooth 1.2. Neural Comput Appl 20(6):879–887

    Google Scholar 

  13. Patra JC, Pal RN (1995) A functional link artificial neural network for adaptive channel equalization. Signal Process 43(2):181–195

    Article  MATH  Google Scholar 

  14. Patra, JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans Syst Man Cybern Part B 32(4):505–511

    Google Scholar 

  15. Lin CJ, Wu CF (2009) An efficient symbiotic particle swarm optimization for recurrent functional neural fuzzy network design. In J Fuzzy Syst 11(4):262–271

    Google Scholar 

  16. Chen CH, Lin CJ, Lin CT (2008) A functional-link-based neuro-fuzzy network for nonlinear system control. IEEE Trans Fuzzy Syst 16(5):1362–1378

    Article  Google Scholar 

  17. Lin FJ, Hsieh HJ, Chou PH, Lin YS (2011) Digital signal processor-based cross-coupled synchronous control of dual linear motors via functional link radial basis function network. IET Control Theory Appl 5(4):552–564

    Article  MathSciNet  Google Scholar 

  18. Lin CM, Hsu CF (2004) Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings. IEEE Trans Fuzzy Syst 12(5):733–742

    Article  Google Scholar 

  19. Lin FJ, Wang DH, Huang PK (2005) FPGA-based fuzzy sliding-mode control for a linear induction motor drive. IET Electr Power Appl 152(5):1137–1148

    Article  Google Scholar 

  20. Tseng CS, Chen BS (2001) H decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Trans Fuzzy Syst 9(6):795–809

    Article  Google Scholar 

  21. Peng YF (2009) Robust intelligent backstepping tracking control for uncertain nonlinear chaotic systems using H control technique. Chaos Solit Frac 41(4):2081–2096

    Article  MATH  Google Scholar 

  22. Shahnazi R, Akbarzadeh-T M (2008) PI adaptive fuzzy control with large and fast disturbance rejection for a class of uncertain nonlinear systems. IEEE Trans Fuzzy Syst 16(1):187–1978

    Article  Google Scholar 

  23. Pisano A, Davila A, Fridman L, Usai E (2008) Cascade control of PM DC drives via second-order sliding-mode technique. IEEE Trans Ind Electr 55(11):3846–3854

    Article  Google Scholar 

  24. Elmas C, Ustun O, Sayan HH (2008) A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive. Expert Syst Appl 34(1):657–664

    Article  Google Scholar 

  25. Hsu CF, Lin BK (2011) FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach. Expert Syst Appl 38(9):11866–11872

    Article  Google Scholar 

  26. Hsu CF (2012) Intelligent tracking control of a DC motor driver using self-organizing TSK type fuzzy neural networks. Nonlinear Dyn 67(1):587–600

    Article  MATH  Google Scholar 

  27. Wang CC, Su JP (2003) Composite sliding control of chaotic systems with uncertainties. In J Bifurcation Chaos 13(4):863–878

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin FJ, Hwang JC, Chou PH, Hung YC (2010) FPGA-based intelligent-complementary sliding-mode control for PMLSM servo-drive system. IEEE Trans Power Electr 25(10):2573–2587

    Article  Google Scholar 

  29. Hsu CF, Lin PZ, Lee TT, Wang CH (2008) Adaptive asymmetric fuzzy neural network controller design via network structuring adaptation. Fuzzy Sets Syst 159(20):2627–2649

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin FJ, Hung YC, Hwang JC, Tsai MT (2013) Fault-tolerant control of a six-phase motor drive system using a Takagi-Sugeno-Kang type fuzzy neural network with asymmetric membership function. IEEE Trans Power Electr 28(7):3557–3572

    Article  Google Scholar 

  31. Lagerholm M, Peterson C, Braccini G, Edenbrandt L, Sornmo L (2000) Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans Biomed Eng 47(7):838–848

    Article  Google Scholar 

  32. Lin FJ, Chen SY, Huang MS (2010) Tracking control of thrust active magnetic bearing system via Hermite polynomial-based recurrent neural network. IET Electr Power Appl 4(9):701–714

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers for their valuable comments. The authors appreciate the partial financial support from the National Science Council of Republic of China under grant NSC 100-2628-E-032-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fei Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CF. Adaptive functional-link-based neural fuzzy controller design for a DC gear motor driver. Neural Comput & Applic 23 (Suppl 1), 303–313 (2013). https://doi.org/10.1007/s00521-013-1401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1401-3

Keywords

Navigation