Abstract
In this paper, we make an overview of three techniques that have used artificial neural networks (ANNs) to model impairments in optical fiber. A comparison between a linear partial least squares regression algorithm and ANN is also shown. We demonstrate that nonlinear modeling is required for multi-impairment monitoring in optical fiber when using Parametric Asynchronous Eye Diagram (PAED). Results demonstrating the accuracy of PAED are also shown. A comparison between PAED and Synchronous Eye Diagrams is also demonstrated, for NRZ, RZ and QPSK modulated signals. We show that PAED can provide comprehensible diagrams for QPSK modulated signals, under a certain range of chromatic dispersion.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kilper DC, Bach R, Blumenthal DJ, Einstein D, Landolsi T, Ostar L, Preiss M, Willner AE (2004) Optical performance monitoring. J Lightwave Technol 22(1):294 http://jlt.osa.org/abstract.cfm?URI=jlt-22-1-294
Willner A, Wu X, Yang JY (2010) In: Optical performance monitoring. Academic Press, Oxford, pp. 1–19. doi:10.1016/B978-0-12-374950-5.00001-8
Tsai KT, Way WI (2005) Chromatic-dispersion monitoring using an optical delay-and-add filter. IEEE/OSA J Lightwave Technol 23(11):3737. doi:10.1109/JLT.2005.856230
Gordon J, Kogelnik H (2000) PMD fundamentals: polarization mode dispersion in optical fibers. Proc Natl Acad Sci 97(9):4541
Ghatak A, Thyagarajan K (1998) An introduction to fiber optics. Cambridge University Press, Cambridge http://books.google.pt/books?id=pG34VZMil7IC
Ribeiro V, Costa L, Lima M, Teixeira ALJ (2012) Optical performance monitoring using the novel parametric asynchronous eye diagram. Opt Express 20(9):9851. doi:10.1364/OE.20.009851, http://www.opticsexpress.org/abstract.cfm?URI=oe-20-9-9851
Ribeiro VM, Lima M, Teixeira A (2012) In: Optical fiber communication conference (Optical Society of America), p. JW2A.33. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-JW2A.33
Shen T, Meng K, Lau A, Dong ZY (2010) Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. Photonics Technol Lett IEEE 22(22):1665. doi:10.1109/LPT.2010.2078804
Jargon JA, Wu X, Willner AE (2009) In: Optical fiber communication conference. (Optical Society of America), p. OThH1 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OThH1
Wu X, Jargon J, Christen L, Willner A (2008) In: IEEE lasers and electro-optics society, 2008. LEOS 2008. 21st annual meeting of the, pp. 543–544. doi:10.1109/LEOS.2008.4688732
Dods S, Anderson T (2006) In: Optical fiber communication conference, 2006 and the 2006 national fiber optic engineers conference. OFC 2006, p. 3 doi:10.1109/OFC.2006.215890
Anderson T, Kowalczyk A, Clarke K, Dods S, Hewitt D, Li J (2009) Multi impairment monitoring for optical networks. J Lightwave Technol 27(16):3729. doi:10.1109/JLT.2009.2025052
Wu X, Jargon J, Paraschis L, Willner A (2011) Ann-based optical performance monitoring of qpsk signals using parameters derived from balanced-detected asynchronous diagrams. Photonics Technol Lett, IEEE 23(4):248. doi:10.1109/LPT.2010.2098025
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157
Zhang GP (2000) Neural networks for classification: a survey. Syst Man Cybern Part C: Appl Rev, IEEE Trans on 30(4):451
Acknowledgments
The grant SFRH/BD/69577/2010 from the Portuguese Foundation for Science and Technology is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ribeiro, V., Lima, M. & Teixeira, A. Comparison of optical performance monitoring techniques using artificial neural networks. Neural Comput & Applic 23, 583–589 (2013). https://doi.org/10.1007/s00521-013-1405-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-013-1405-z