Skip to main content

Advertisement

Log in

Transfer learning using the online Fuzzy Min–Max neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present an empirical analysis on transfer learning using the Fuzzy Min–Max (FMM) neural network with an online learning strategy. Three transfer learning benchmark data sets, i.e., 20 Newsgroups, WiFi Time, and Botswana, are used for evaluation. In addition, the data samples are corrupted with white Gaussian noise up to 50 %, in order to assess the robustness of the online FMM network in handling noisy transfer learning tasks. The results are analyzed and compared with those from other methods. The outcomes indicate that the online FMM network is effective for undertaking transfer learning tasks in noisy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boutsioukis G, Partalas I, Vlahavas I (2012) Transfer learning in multi-agent reinforcement learning domains. In: Recent advances in reinforcement learning, 9th European Workshop EWRL 2011, Athens, Greece. doi:10.1007/978-3-642-29946-9_25

  2. Mahmud MMH (2009) On universal transfer learning. Theor Comput Sci 410:1826–1846

    Article  MATH  MathSciNet  Google Scholar 

  3. Kocer B, Arslan A (2010) Genetic transfer learning. Expert Syst Appl 37:6997–7002

    Article  Google Scholar 

  4. Ostry DI (2006) Synthesis of accurate fractional Gaussian noise by filtering. IEEE Trans Inf Theory 52(4):1609–1623

    Article  MathSciNet  Google Scholar 

  5. Xu Z, Sun S (2012) Multi-source transfer learning with multi-view Adaboost. In: Neural information processing, 19th International Conference ICONIP 2012, Doha, Qatar. doi:10.1007/978-3-642-34487-9_41

  6. Yang S, Lin M, Hou C, Zhang C, Wu Y (2012) A general framework for transfer sparse subspace learning. Neural Comput Appl 21(7):1801–1817

    Article  Google Scholar 

  7. Luis R, Sucar LE, Morales EF (2010) Inductive transfer for learning Bayesian networks. Mach Learn 79(1–2):227–255

    Article  MathSciNet  Google Scholar 

  8. Seok HS, Hwang KB, Zhang BT (2011) Feature relevance network-based transfer learning for indoor location estimation. IEEE Trans Syst Man Cybern Part C Appl Rev 41(5):711–719

    Article  Google Scholar 

  9. La L, Guo Q, Cao Q, Wang Y (2012) Transfer learning with reasonable boosting strategy. Neural Comput Appl. doi:10.1007/s00521-012-1297-3

    Google Scholar 

  10. Yang S, Hou C, Zhang C, Wu Y (2013) Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning. Neural Comput Appl 23:541–559

    Article  Google Scholar 

  11. Chen J, Liu X (2013) Transfer learning with one-class data. Pattern Recognit Lett. doi:10.1016/j.patrec.2013.07.017

    Google Scholar 

  12. Huang P, Wang G, Qin S (2012) Boosting for transfer learning from multiple data sources. Pattern Recognit Lett 33:568–579

    Article  Google Scholar 

  13. Tan Q, Deng H, Yang P (2013) Knowledge transfer across different domain data with multiple views. Neural Comput Appl. doi:10.1007/s00521-013-1432-9

    Google Scholar 

  14. Simpson PK (1992) Fuzzy min-max neural networks-part 1: classification. IEEE Trans Neural Netw 3(5):776–786

    Article  Google Scholar 

  15. Simpson PK (1993) Fuzzy min-max neural networks-part 2: clustering. IEEE Trans Fuzzy Syst 1(1):32–45

    Article  Google Scholar 

  16. Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11(3):769–783

    Article  Google Scholar 

  17. Seera M, Lim CP, Ishak D, Singh H (2012) Application of the fuzzy min–max neural network to fault detection and diagnosis of induction motors. Neural Comput Appl. doi:10.1007/s00521-012-1310-x

    Google Scholar 

  18. Shen F, Yu H, Sakurai K, Hasegawa O (2011) An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network. Neural Comput Appl 20(7):1061–1074

    Article  Google Scholar 

  19. Carpenter GA, Grossberg S (1988) The art of adaptive pattern recognition by a self-organizing neural network. IEEE Comput 21:77–88

    Article  Google Scholar 

  20. Zheng J, Yu H, Shen F, Zhao J (2013) An online incremental learning support vector machine for large-scale data. Neural Comput Appl 22(5):1023–1035

    Article  Google Scholar 

  21. Xu Y, Shen F, Zhao J (2012) An incremental learning vector quantization algorithm for pattern classification. Neural Comput Appl 21:1205–1215

    Article  Google Scholar 

  22. Hao Z, Yu S, Yang X, Zhao F, Hu R, Liang Y (2004) Online LS-SVM learning for classification problems based on incremental chunk. In: Lecture notes computer science 3173, pp 558–564

  23. Wang G, Guo Z, Qian L (2013) Online incremental learning for tool condition classification using modified Fuzzy ARTMAP network. J Intell Manuf. doi:10.1007/s10845-013-0738-x

    Google Scholar 

  24. Kohonen T (1984) Self-organization and associative memory. Springer, Berlin

    MATH  Google Scholar 

  25. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  26. Efron B (1979) Bootstrap methods: another look at the Jackknife. The Ann Stat 7:1–26

    Article  MATH  MathSciNet  Google Scholar 

  27. Ader HJ, Mellenbergh GJ (2008) Advising on research methods: a consultant’s companion. Johannes van Kessel Publishing, Huizen

    Google Scholar 

  28. Efron B, Tibshirani R (1993) An Introduction to the bootstrap. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  29. Nettleton DF, Orriols-Puig A, Fornells A (2010) A study of the effect of different types of noise on the precision of supervised learning techniques. Artif Intell Rev 33:275–306

    Article  Google Scholar 

  30. Casella G, Berger RL (1990) Statistical inference, 2nd edn. Duxbury Press, Belmont

    MATH  Google Scholar 

  31. Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study of their impacts. Artif Intel Rev 22:177–210

    Article  MATH  Google Scholar 

  32. Zelenkov A, Zelenkov S (2010) Choice of Gaussian noise generator for noise immunity estimation of binary channels with Viterbi detection. Sci J Riga Tech Univ 10:7–15

    Google Scholar 

  33. Kohlschütter C (2009) A densitometric analysis of web template content. In: Proceedings of the 18th international conference on world wide web, pp 1165–1166

  34. Mitchell J (2002) The use of non-normal distributions in quantifying qualitative survey data on expectations. Econ Lett 76:101–107

    Article  MATH  Google Scholar 

  35. Singh S (1999) Noise impact on time-series forecasting using an intelligent pattern matching technique. Pattern Recognit 32(8):1389–1398

    Article  Google Scholar 

  36. Zhang GP (2007) A neural network ensemble method with jittered training data for time series forecasting. Inf Sci 177(23):5329–5346

    Article  Google Scholar 

  37. Shomorony I, Avestimehr AS (2012) Is Gaussian noise the worst-case additive noise in wireless networks? IEEE Int Symp Inf Theory. doi:10.1109/ISIT.2012.6283743

    Google Scholar 

  38. Brown WM, Gedeon TD, Groves DI (2003) Use of noise to augment training data: a neural network method of mineral–potential mapping in regions of limited known deposit examples. Nat Resour Res 12(2):141–152

    Article  Google Scholar 

  39. Ghahramani Z, Jordan MI (1997) Mixture models for learning from incomplete data. Comput Learn Theory Nat Learn Sys 4:67–85

    Google Scholar 

  40. The MathWorks Inc (2010) Communications toolbox 4 user’s guide. Natick MA 341

  41. Dai W, Yang Q, Xue G, Yu Y (2007) Boosting for transfer learning. In: Proceedings of the 24th international conference on machine learning pp 193–200

  42. Shi X, Fan W, Ren J (2008) Actively transfer domain knowledge. Proceedings of European conference on machine learning and knowledge discovery in databases, pp 342–357

  43. Gao J, Fan W, Jiang J, Han J (2008) Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th international conference on knowledge discovery and data mining, pp 283–291

  44. Mustafa H, Chou PH (2012) Embedded damage detection in water pipelines using wireless sensor networks. In: IEEE international conference high performance computing and communication and embedded software and systems, pp 1578–1586

  45. Lalkhen AG, McCluskey A (2008) Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain 8(6):221–223

    Article  Google Scholar 

  46. De Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7):1196–1206

    Article  Google Scholar 

  47. Current trends update: serologic testing for antibody to human immunodeficiency virus (2001) http://www.cdc.gov/mmwr/preview/mmwrhtml/00051681.htm

  48. Alvarenga AV, Pereira WC, Infantosi AFC, de Azevedo CM (2005) Classification of breast tumours on ultrasound images using morphometric parameters. In: IEEE international workshop intelligent signal processing, pp 206–210

  49. Zheng VW, Xiang EQ, Yang Q, Shen D (2008) Transferring localization models over time. Proceedings of the 23rd AAAI conference on artificial intelligence, pp 1421–1426

  50. Rajan S, Ghosh J, Crawford MM (2006) Exploiting class hierarchies for knowledge transfer in hyperspectral data. IEEE Trans Geosci Remote Sens 44(11):3408–3417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Peng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seera, M., Lim, C.P. Transfer learning using the online Fuzzy Min–Max neural network. Neural Comput & Applic 25, 469–480 (2014). https://doi.org/10.1007/s00521-013-1517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1517-5

Keywords

Navigation