Skip to main content
Log in

Combination of linear regression classification and collaborative representation classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Classification using the l 2-norm-based representation is usually computationally efficient and is able to obtain high accuracy in the recognition of faces. Among l 2-norm-based representation methods, linear regression classification (LRC) and collaborative representation classification (CRC) have been widely used. LRC and CRC produce residuals in very different ways, but they both use residuals to perform classification. Therefore, by combining the residuals of these two methods, better performance for face recognition can be achieved. In this paper, a simple weighted sum based fusion scheme is proposed to integrate LRC and CRC for more accurate recognition of faces. The rationale of the proposed method is analyzed. Face recognition experiments illustrate that the proposed method outperforms LRC and CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  2. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  3. Zhao W, Chellappa R, Stublers PO (2006) Face processing: advanced modeling and methods. J Electron Imaging 15(4):049901–049901-1

    Article  Google Scholar 

  4. Chang K, Bowyer KW, Sarkar S, Victor B (2003) Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans Pattern Anal Mach Intell 25(9):1160–1165

    Article  Google Scholar 

  5. Ren Ch-X, Dai D-Q (2010) Incremental learning of bidirectional principal components for face recognition. Pattern Recognit 43(1):318–330

    Article  MATH  Google Scholar 

  6. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 24(1):131–137

    Article  Google Scholar 

  7. Xu Y, Zhang D, Yang JY (2010) A feature extraction method for use with bimodal biometrics. Pattern Recognit 43(3):1106–1115

    Article  MATH  Google Scholar 

  8. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. In: Proceedings of the IEEE computer society conference on computer vision pattern recognition, pp 846–853

  9. Wang J, Xu Y, Zhang D, You J (2010) An efficient method for computing orthogonal discriminant vectors. Neurocomputing 73(10):2168–2176

    Article  Google Scholar 

  10. Yang J, Zhang D, Xu Y, Yang J-Y (2005) Two-dimensional discriminant transform for face recognition. Pattern Recognit 38(7):1125–1129

    Article  MATH  Google Scholar 

  11. Xu Y, Zhang D (2010) Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme. Opt Eng 49(3):037002–037002-6

    Article  Google Scholar 

  12. Yang J, Yang J-Y, Frangi AF (2003) Combined fisherfaces framework. Image Vision Comput 21(12):1037–1044

    Article  Google Scholar 

  13. Zhang B, Qiao Y (2010) Face recognition based on gradient Gabor feature and efficient kernel fisher analysis. Neural Comput Appl 19(4):617–623

    Article  MathSciNet  Google Scholar 

  14. Li J, Pan J, Lu Z (2009) Face recognition using Gabor-based complete kernel fisher discriminant analysis with fractional power polynomial models. Neural Comput Appl 18(6):613–621

    Article  Google Scholar 

  15. Li J, Pan J, Lu Z (2009) Kernel optimization-based discriminant analysis for face recognition. Neural Comput Appl 18:603–612

    Article  Google Scholar 

  16. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  17. Wagner A, Wright J, Ganesh A, Zhou ZH, Ma Y (2009) Towards a practical face recognition system: robust registration and illumination by sparse representation. In: IEEE computer society conference on computer vision pattern recognition workshops, pp 597–604

  18. Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: Proceedings of the 11th European conference on computer vision, pp 448–461

  19. Zhang H, Nasrabadi NM, Zhang Y, Huang TS (2012) Joint dynamic sparse representation for multi-view face recognition. Pattern Recognit 45(4):1290–1298

    Article  Google Scholar 

  20. Bach F, Mairal J, Ponce J, Sapiro G (2010) Sparse coding and dictionary learning for image analysis. CVPR’10 Tutorial, San Francisco

  21. Candes E, Tao T (2007) The Dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang J, Zhang L, Xu Y, Yang J-Y (2012) Beyond sparsity: the role of L1-optimizer in pattern classification. Pattern Recognit 45(3):1104–1118

    Article  MATH  Google Scholar 

  23. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S (2009) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  24. Donoho D (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 56(6):797–829

    Article  MathSciNet  Google Scholar 

  25. Shi Q, Eriksson A, Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In: Proceedings of the IEEE computer society conference on computer vision pattern recognition, pp 553–560

  26. Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  Google Scholar 

  27. Zuo W, Meng D, Zhang L, Feng X, Zhan DG (2013) A generalized iterated shrinkage algorithm for non-convex sparse coding. In: Proceedings of the IEEE international conference on computer vision, pp 217–224

  28. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  29. Zhang L, Yang M, and Feng X (2011). Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the IEEE international conference computer vision, pp 471–478

  30. Xu Y, Zhu Q, Zhang D, Yang J-Y (2011) Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 74:3946–3952

    Article  Google Scholar 

  31. Xu Y, Zhong A, Yang J, Zhang D (2011) Bimodal biometrics based on a representation and recognition approach. Opt Eng 50(3):037202–037202-7

    Article  Google Scholar 

  32. Zhang L, Yang M, Feng Z, Zhang D (2010) On the dimensionality reduction for sparse representation based face recognition. In: Proceedings of the international conference on pattern recognition, pp 1237–1240

  33. Xu Y, Zuo W, Fan Z (2011) Supervised sparse presentation method with a heuristic strategy and face recognition experiments. Neurocomputing 79:125–131

    Article  Google Scholar 

  34. Zhang S, Gu X (2012) Palmprint recognition method based on score level fusion. Optik Int J Light Electron Opt 124(18):3340–3344

    Google Scholar 

  35. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via. sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  36. Dong W, Shi G, Zhang L, Wu X (2010) Super-resolution with nonlocal regularized sparse representation. In: Proceedings of the SPIE international society optical engineering, pp 1899–2013

  37. Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: IEEE conference computer vision pattern recognition, pp 1–8

  38. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  39. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  Google Scholar 

  40. Yang AY, Wright J, Ma Y, Sastry S (2007) Feature selection in face recognition: a sparse representation perspective. Technical report, UC Berkeley (UCB)

  41. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  42. http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html

  43. Martinez AM, Benavente R (1998) The AR face database. CVC technical report #24

Download references

Acknowledgments

This paper is partially supported by National Natural Science Foundation of China under Grant Nos. 61300032, 61001037, 61271093 and 61102037. Thanks to Dr. Edward C. Mignot, Shandong University, for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wang, F., Chen, Y. et al. Combination of linear regression classification and collaborative representation classification. Neural Comput & Applic 25, 833–838 (2014). https://doi.org/10.1007/s00521-014-1564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1564-6

Keywords

Navigation