Skip to main content
Log in

Online dynamic security assessment of microgrids before intentional islanding occurrence

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a statistical learning-based method for security assessment of microgrids (MGs) in case of isolation from the main grid. Based on the stability criteria, the MG pre-islanding conditions are divided into secure and insecure regions. Critical system variables regarding the MG dynamic security are first selected via a feature selection procedure, known as minimum redundancy maximum relevance. An unsupervised learning method called pattern discovery method is then performed on the space of the critical features to extract the organization (patterns) among samples. Geometrically, the patterns are hyper-rectangles in the features space representing the system dynamic secure/insecure regions and can be effectively used for online MG security monitoring before islanding condition. Simulation results are carried out in the time domain, by using MATLAB, which demonstrate the effectiveness and accuracy of the proposed method in the MG security assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sanjari MJ, Gharehpetian GB (2014) Game theoretic approach to cooperative control of distributed energy resources in islanded microgrid considering voltage and frequency stability. Neural Comput Appl 25(2):343–351. doi:10.1007/s00521-013-1497-5

  2. Sanjari MJ, Gharehpetian GB (2013) Small signal stability based fuzzy potential function proposal for secondary frequency and voltage control of islanded microgrid. Electr Power Compon Syst 41(5):485–499

    Article  Google Scholar 

  3. Majumder R, Chakrabarti S, Ledwich G, Ghosh A (2013) Advanced battery storage control for an autonomous microgrid. Electr Power Compon Syst 41(2):157–181

    Article  Google Scholar 

  4. Sanjari MJ, Gharehpetian GB (2013) Unified framework for frequency and voltage control of autonomous microgrids. IET Gener Transm Distrib 7(9):965–972. doi:10.1049/iet-gtd.2012.0761

    Article  Google Scholar 

  5. Sanjari MJ, Gharehpetian GB (2014) Incomplete information based decentralized cooperative control strategy for distributed energy resources of VSI-based microgrids. Neural Comput Appl 25(1):189–197. doi:10.1007/s00521-013-1473-0

  6. Zhang Z, Huang X, Jiang J, Wu B (2010) A load-sharing control scheme for a microgrid with a fixed frequency inverter. Electr Power Syst Res 80(3):311–317

    Article  Google Scholar 

  7. Logenthiran T, Srinivasan D, Khambadkone AM (2011) Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system. Electr Power Syst Res 81(1):138–148

    Article  Google Scholar 

  8. Moreira CL, Pecas Lopes JA (2007) MicroGrids dynamic security assessment. In: International conference on clean electrical power. ICCEP ‘07, pp 26–32

  9. Lasseter R (2002) Microgrids. In: IEEE PES Winter Meeting, vol 1, pp 305–308

  10. Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625

    Article  Google Scholar 

  11. Katiraei F, Iravani MR, Lehn PW (2007) Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources. IET Gener Transm Distrib 1(3):369–378

    Article  Google Scholar 

  12. Fidalgo JN, Peças Lopes JA, Miranda V (1996) Neural networks applied to preventive control measures for the dynamic security of isolated power systems with renewable. IEEE Trans Power Syst 11(4):1811–1816

    Article  Google Scholar 

  13. Vasconcelos H, Peças Lopes JA (2006) ANN design for fast security evaluation of interconnected systems with large wind power production. In: Proceedings of PMAPS 2006—The 9th international conference on probabilistic methods applied to power systems, Stockholm, Sweden

  14. Karapidakis ES, Hatziargyriou ND (2002) Online preventive dynamic security of isolated power systems using decision trees. IEEE Trans Power Syst 17(2):297–304

    Article  Google Scholar 

  15. Xu Y, Dong ZY, Guan L, Zhang R, Wong KP, Luo F (2012) Preventive dynamic security control of power systems based on pattern discovery technique. IEEE Trans Power Syst 27(3):1236–1244

    Article  Google Scholar 

  16. Wong AKC, Wang Y (2003) Pattern discovery: a data driven approach to decision support. IEEE Trans Syst Man Cybern C Appl Rev 33(1):114–124

    Article  MathSciNet  Google Scholar 

  17. Chau T, Wong AKC (1999) Pattern discovery by residual analysis and recursive partitioning. IEEE Trans Knowl Data Eng 11(6):833–852

    Article  Google Scholar 

  18. Ding C, Peng HC (2003) Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of Second IEEE computational systems bioinformatics conference, pp 523–528

  19. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  20. Xu Y, Guan L, Dong ZY, Wong KP (2010) Transient stability assessment on China Southern Power Grid System with an improved pattern discovery-based method. In: Proceedings of 2010 international conference power system technology (POWERCON2010), Hangzhou, China

  21. Wang T, Guan L, Zhang Y (2008) A modified pattern recognition algorithm and its application in power system transient stability assessment. In: Proceedings of 2008 IEEE PES General Meeting

  22. Wolsey LA (1998) Integer programming. Wiley, New York

    MATH  Google Scholar 

  23. Rider MJ, Garcia AV, Romero R (2008) Transmission system expansion planning by a branch-and-bound algorithm. IET Gener Transm Distrib 2(1):90–99

    Article  Google Scholar 

  24. Yeager K, Willis J (1993) Modeling of emergency diesel generators in an 800 megawatt nuclear power plant. IEEE Trans Power Syst 8(3):433–441

    Google Scholar 

  25. Tinney WF, Hart CE (1967) Power flow solution by Newton’s method. IEEE Trans Power Appar Syst 86(11):1449–1460

    Article  Google Scholar 

  26. Papathanassiou S, Hatziargyriou N, Strunz K (2005) A benchmark low voltage microgrid network. In: Proceedings of CIGRE symposium power systems with dispersed generation, Athens

  27. Sanjari MJ, Alizadeh Mousavi O, Gharehpetian GB (2013) Assessing the risk of blackout in the power system including HVDC and FACTS devices. Int Trans Electr Energy Syst 23(1):109–121

    Article  Google Scholar 

  28. Duer Stanisław (2013) Applications of an artificial intelligence for servicing of a technical object. Neural Comput Appl 22(5):955–968

    Article  Google Scholar 

  29. Duer Stanisław (2012) Assessment of the quality of decisions worked out by an artificial neural network (DIAG) which diagnoses a technical object. Neural Comput Appl 21(5):1049–1063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Yatim.

Appendix: VSI, loads and network equations

Appendix: VSI, loads and network equations

1.1 VSI modeling

Figure 3 shows the block diagram of a VSI-based DG model and its controllers. This model consists of voltage controller, current controller, output filter and coupling inductance.

The following equations illustrate the relationship between the input and output of each block of a VSI-based DG connected to the network.

  1. (a)

    Voltage controller: The DAEs of voltage controller are as follows [10]:

    $$ \dot{\phi }_{d} = v_{{{\text{od}},{\text{ref}}}} - v_{\text{od}} $$
    (29)
    $$ \dot{\phi }_{q} = v_{{{\text{oq}},{\text{ref}}}} - v_{\text{oq}} $$
    (30)
    $$ i_{\text{ld}}^{*} = F \cdot i_{\text{od}} - \omega_{n} \cdot C_{f} \cdot v_{\text{oq}} + k_{\text{pv}} (v_{\text{od}}^{*} - v_{\text{od}} ) + k_{\text{iv}} \cdot \phi_{d} $$
    (31)
    $$ i_{\text{iq}}^{*} = F \cdot i_{\text{oq}} - \omega_{n} \cdot C_{f} \cdot v_{\text{od}} + k_{\text{pv}} (v_{\text{oq}}^{*} - v_{\text{oq}} ) + k_{\text{iv}} \cdot \phi_{q} $$
    (32)
  2. (b)

    Current controller: The DAEs of current controller are as follows [10]:

    $$ \dot{\gamma }_{d} = i_{\text{id}}^{*} - i_{\text{id}} $$
    (33)
    $$ \dot{\gamma }_{q} = i_{\text{iq}}^{*} - i_{\text{iq}} $$
    (34)
    $$ v_{\text{id}}^{*} = - \omega_{n} \cdot L_{f} \cdot i_{\text{lq}} + k_{\text{pc}} (i_{\text{lq}}^{*} - i_{\text{lq}} ) + k_{\text{ic}} \cdot \gamma_{d} $$
    (35)
    $$ v_{\text{iq}}^{*} = \omega_{n} \cdot L_{f} \cdot i_{\text{ld}} + k_{\text{pc}} (i_{\text{lq}}^{*} - i_{\text{lq}} ) + k_{\text{ic}} \cdot \gamma_{q} $$
    (36)
  3. (c)

    Output filter and coupling inductance: The DAEs of output filter and coupling inductance are as follows [10]:

    $$ \dot{i}_{\text{ld}} = - \frac{{r_{f} }}{{L_{f} }}i_{\text{ld}} + \omega_{\text{ref}} i_{\text{lq}} + \frac{1}{{L_{f} }}v_{\text{id}} - \frac{1}{{L_{f} }}v_{\text{od}} $$
    (37)
    $$ \dot{i}_{\text{lq}} = - \frac{{r_{f} }}{{L_{f} }}i_{\text{lq}} - \omega_{\text{ref}} i_{\text{ld}} + \frac{1}{{L_{f} }}v_{\text{iq}} - \frac{1}{{L_{f} }}v_{\text{oq}} $$
    (38)
    $$ \dot{v}_{\text{od}} = \omega_{\text{ref}} v_{\text{oq}} + \frac{1}{{C_{f} }}i_{\text{ld}} - \frac{1}{{C_{f} }}i_{\text{od}} $$
    (39)
    $$ \dot{v}_{\text{oq}} = - \omega_{\text{ref}} v_{\text{od}} + \frac{1}{{C_{f} }}i_{\text{lq}} - \frac{1}{{C_{f} }}i_{\text{oq}} $$
    (40)
    $$ \dot{i}_{\text{od}} = - \frac{{r_{c} }}{{L_{c} }}i_{\text{od}} + \omega_{\text{ref}} i_{\text{oq}} + \frac{1}{{L_{c} }}v_{\text{od}} - \frac{1}{{L_{c} }}v_{\text{bd}} $$
    (41)
    $$ \dot{i}_{\text{oq}} = - \frac{{r_{c} }}{{L_{c} }}i_{\text{oq}} - \omega_{\text{ref}} i_{\text{od}} + \frac{1}{{L_{c} }}v_{\text{oq}} - \frac{1}{{L_{c} }}v_{\text{bq}} $$
    (42)

1.2 Load modeling

A general RL load is considered in this paper. The state equations of the RL load connected at i-th node are [10]:

$$ \frac{{d(i_{{{\text{load}}\,D,i}} )}}{{{\text{d}}t}} = \frac{{ - R_{{{\text{load}}i}} }}{{L_{{{\text{load}}i}} }}i_{{{\text{load}}\,D,i}} + \omega i_{{{\text{load}}\,Q,i}} + \frac{1}{{L_{{{\text{load}}i}} }}v_{bDi} $$
(43)
$$ \frac{{d(i_{{{\text{load}}\,Q,i}} )}}{{{\text{d}}t}} = \frac{{ - R_{{{\text{load}}i}} }}{{L_{{{\text{load}}i}} }}i_{{{\text{load}}\,Q,i}} - \omega i_{{{\text{load}}\,D,i}} + \frac{1}{{L_{{{\text{load}}i}} }}v_{bQi} $$
(44)

1.3 Network modeling

On a common reference frame, the state equations of line current of i-th line connected between nodes j and k are [10]:

$$ \frac{{d(i_{{{\text{line}}\,D,i}} )}}{{{\text{d}}t}} = \frac{{ - R_{{{\text{line}}i}} }}{{L_{{{\text{line}}i}} }}i_{{{\text{line}}\,D,i}} + \omega i_{{{\text{line}}\,Q,i}} + \frac{1}{{L_{{{\text{line}}i}} }}v_{bDi} - \frac{1}{{L_{{{\text{line}}i}} }}v_{bDk} $$
(45)
$$ \frac{{d(i_{{{\text{line}}\,Q,i}} )}}{{{\text{d}}t}} = \frac{{ - R_{{{\text{line}}i}} }}{{L_{{{\text{line}}i}} }}i_{{{\text{line}}\,Q,i}} - \omega i_{{{\text{line}}\,D,i}} + \frac{1}{{L_{{{\text{line}}i}} }}v_{bQi} - \frac{1}{{L_{{{\text{line}}i}} }}v_{bQk} $$
(46)

By integrating equations of VSIs, lines and loads and using KCL for each node [10, 11], the MG general equations can be briefly written, as (17) in Sect. 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjari, M.J., Yatim, A.H. & Gharehpetian, G.B. Online dynamic security assessment of microgrids before intentional islanding occurrence. Neural Comput & Applic 26, 659–668 (2015). https://doi.org/10.1007/s00521-014-1706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1706-x

Keywords