Skip to main content
Log in

A chaos embedded GSA-SVM hybrid system for classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Parameter optimization and feature selection influence the classification accuracy of support vector machine (SVM) significantly. In order to improve classification accuracy of SVM, this paper hybridizes chaotic search and gravitational search algorithm (GSA) with SVM and presents a new chaos embedded GSA-SVM (CGSA-SVM) hybrid system. In this system, input feature subsets and the SVM parameters are optimized simultaneously, while GSA is used to optimize the parameters of SVM and chaotic search is embedded in the searching iterations of GSA to optimize the feature subsets. Fourteen UCI datasets are employed to calculate the classification accuracy rate in order to evaluate the developed CGSA-SVM approach. The developed approach is compared with grid search and some other hybrid systems such as GA-SVM, PSO-SVM and GSA-SVM. The results show that the proposed approach achieves high classification accuracy and efficiency compared with well-known similar classifier systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  2. Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A novel LS-SVMs hyper parameter selection based on particle swarm optimization. Neurocomputing 71:3211–3215

    Article  Google Scholar 

  3. Wu Q, Wu Sh, Liu J (2010) Hybrid model based on SVM with Gaussian loss function and adaptive Gaussian PSO. Eng Appl Artif Intell 23:487–494

    Article  Google Scholar 

  4. Shin K-S, Lee T-S, Kim H-J (2005) An application of support vector machines in bankruptcy prediction model. Expert Syst Appl 28:127–135

    Article  Google Scholar 

  5. Zhang X, Zhou J, Wang C et al (2012) Multi-class support vector machine optimized by inter-cluster distance and self-adaptive deferential evolution. Appl Math Comput 218:4973–4987

    Article  MATH  MathSciNet  Google Scholar 

  6. Yuan S-F, Chu F-L (2007) Fault diagnostics based on particle swarm optimization and support vector machines. Mech Syst Signal Process 21:1787–1798

    Article  Google Scholar 

  7. Huang C-L, Wang C-J (2006) A GA-based feature selection and parameters optimization for support vector machines. Expert Syst Appl 31:231–240

    Article  Google Scholar 

  8. Lin S-W, Ying K-C, Chen S-C et al (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35:1817–1824

    Article  Google Scholar 

  9. Huang Ch-L, Dun J-F (2008) A distributed PSO–SVM hybrid system with features selection and parameter optimization. Appl Soft Comput 8:1381–1391

    Article  Google Scholar 

  10. Friedrichs F, Igel Ch (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64:107–117

    Article  Google Scholar 

  11. Boardman M, Trappenberg T (2006) A heuristic for free parameter optimization with support vector machines. In: International joining conference on neural networks. IEEE Computer Society Press, Silver Springer, MD, pp 1337–1344

  12. Gadat S, Younes L (2007) A stochastic algorithm for feature selection in pattern recognition. J Mach Learn Res 8:509–547

    MATH  Google Scholar 

  13. Zhang H, Sun G (2002) Feature selection using tabu search method. Pattern Recognit 35:701–711

    Article  MATH  Google Scholar 

  14. Unler A, Murat A (2010) A discrete particle swarm optimization method for feature selection in binary classification problems. Eur J Oper Res 206:528–539

    Article  MATH  Google Scholar 

  15. Das S, Abraham A, Konar A (2008) Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm. Pattern Recognit Lett 29:688–699

    Article  Google Scholar 

  16. Ranaee V, Ebrahimizadeh A, Ghaderi R (2010) Application of the PSO–SVM model for recognition of control chart patterns. ISA Trans 49(4):577–586

    Article  Google Scholar 

  17. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  18. Li C, Zhou J (2011) Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers Manag 52(1):374–381

    Article  Google Scholar 

  19. Li C, Li H, Kou P (2014) Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system. Neurocomputing 124:139–148

    Article  Google Scholar 

  20. Li C, Zhou J, Fu B et al (2012) T-S fuzzy model identification with gravitational search based hyper-plane clustering algorithm. IEEE Trans Fuzzy Syst 20:305–317

    Article  Google Scholar 

  21. Li C, Zhou J, Xiao J, Xiao H (2013) Hydraulic turbine governing system identification using T-S fuzzy model optimized by chaotic gravitational search algorithm. Eng Appl Artif Intell 26(9):2073–2082

    Article  Google Scholar 

  22. Chatterjee A, et al (2014) A gravitational search algorithm (GSA) based photo-voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator. Energy. doi:10.1016/j.energy.2014.07.037

  23. Shuaib YM, Kalavathi MS, Rajan CCA (2015) Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int J Electr Power Energy Syst 64:384–397

    Article  Google Scholar 

  24. Jiang S, Ji Z, Shen Y (2014) A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int J Electr Power Energy Syst 55:628–644

    Article  Google Scholar 

  25. Ganesan T, Elamvazuthi I, Ku Shaari KZ, Vasant P (2013) Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production. Appl Energy 103(2013):368–374

    Article  Google Scholar 

  26. Han X, Chang X, Quan L et al (2014) Feature subset selection by gravitational search algorithm optimization. Inf Sci 281:128–146

    Article  MathSciNet  Google Scholar 

  27. Zhang W, Niu P, Li G et al (2013) Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm. Knowl Based Syst 39:34–44

    Article  Google Scholar 

  28. Sarafrazi S, Nezamabadi-pour H (2013) Facing the classification of binary problems with a GSA-SVM hybrid system. Math Comput Model 57:270–278

    Article  MATH  MathSciNet  Google Scholar 

  29. Li C, Zhou J, Kou P et al (2012) A novel chaotic particle swarm optimization based fuzzy clustering algorithm. Neurocomputing 83:98–109

    Article  Google Scholar 

  30. Li C, Zhou J, Xiao J, Xiao H (2012) Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos, Solitons Fractals 45(4):539–547

    Article  Google Scholar 

  31. Liu B, Wang L, Jin Y et al (2005) Improved particle swarm optimization combined with chaos. Chaos, Solitons Fractals 25:1261–1271

    Article  MATH  Google Scholar 

  32. Hu Y, Zhang H (2012) Chaos Optimization Method of SVM Parameters Selection for Chaotic Time Series Forecasting. Phys Procedia 25:588–594

    Article  Google Scholar 

  33. Wu Q (2011) A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM. Expert Syst Appl 38:184–192

    Article  Google Scholar 

  34. Dos Santos GS, Luvizotto LGJ, Mariani VC, Coelho LDS (2012) Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process. Expert Syst Appl 39:4805–4812

    Article  Google Scholar 

  35. Chuang L, Yang C, Li J (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11:239–248

    Article  Google Scholar 

  36. May R (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  Google Scholar 

  37. Hettich S, Blake C, Merz C (1998) UCI repository of machine information and computer sciences. http://www.ics.uci.edu/~mlearn/MLRepository.html

  38. Salzberg SL (1997) On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Disc 1:317–327

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research (Grant No. IWHR-SKL-201220), the National Natural Science Foundation of China (Grant Nos. 51479076, 51109088, 51309258), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110142120020) and the Fundamental Research Funds for the Central Universities, HUST (No. 2013QN114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoshun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., An, X. & Li, R. A chaos embedded GSA-SVM hybrid system for classification. Neural Comput & Applic 26, 713–721 (2015). https://doi.org/10.1007/s00521-014-1757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1757-z

Keywords