Skip to main content

Advertisement

Log in

Bio-inspired search algorithms to solve robotic assembly line balancing problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Robots are employed in assembly lines to increase the productivity. The objective of robotic assembly line balancing (rALB) problem is to balance the assembly line, by allocating equal amount of tasks to the workstations on the line while assigning the most efficient robot to perform the assembly task at the workstation. In this paper, bio-inspired search algorithms, viz. particle swarm optimization (PSO) algorithm and a hybrid cuckoo search and particle swarm optimization (CS-PSO), are proposed to balance the robotic assembly line with the objective of minimizing the cycle time. The performance of the proposed PSO and hybrid CS-PSO is evaluated using the 32 benchmark problems available in the literature. The simulation results show that both PSO and hybrid CS-PSO are capable of providing solutions within the upper bound obtained by hybrid GA, the only metaheuristic reported so far for rALB in the literature and comparable to the solutions obtained by IBM CPLEX Optimization solver. It is also observed that hybrid CS-PSO is performing better than PSO in terms of cycle time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Salveson ME (1955) The assembly line balancing problem. J Ind Eng 6(3):18–25

    Google Scholar 

  2. Kilincci O, Bayhan GM (2006) A Petri net approach for simple assembly line balancing problems. Int J Adv Manuf Technol 30(11–12):1165–1173

    Article  Google Scholar 

  3. Baybars I (1986) A survey of exact algorithms for the simple assembly line balancing problem. Manage Sci 32(8):909–932

    Article  MathSciNet  Google Scholar 

  4. Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches. Int J Adv Manuf Technol 59(1–4):335–349

    Article  Google Scholar 

  5. Scholl A, Scholl A (1999) Balancing and sequencing of assembly lines. Physica-Verlag, Heidelberg

    Book  Google Scholar 

  6. Levitin G, Rubinovitz J, Shnits B (2006) A genetic algorithm for robotic assembly line balancing. Eur J Oper Res 168(3):811–825

    Article  MathSciNet  Google Scholar 

  7. Gao J, Sun L, Wang L, Gen M (2009) An efficient approach for type II robotic assembly line balancing problems. Comput Ind Eng 56(3):1065–1080

    Article  Google Scholar 

  8. Graves SC, Lamar BW (1983) An integer programming procedure for assembly system design problems. Oper Res 31(3):522–545

    Article  Google Scholar 

  9. Graves SC, Redfield CH (1988) Equipment selection and task assignment for multiproduct assembly system design. Int J Flex Manuf Syst 1(1):31–50

    Article  Google Scholar 

  10. Gutjahr AL, Nemhauser GL (1964) An algorithm for the line balancing problem. Manage Sci 11(2):308–315

    Article  MathSciNet  Google Scholar 

  11. Pinto PA, Dannenbring DG, Khumawala BM (1981) Branch and bound and heuristic procedures for assembly line balancing with paralleling of stations. Int J Prod Res 19(5):565–576

    Article  Google Scholar 

  12. Pinto PA, Dannenbring DG, Khumawala BM (1983) Assembly line balancing with processing alternatives: an application. Manage Sci 29(7):817–830

    Article  MathSciNet  Google Scholar 

  13. Nicosia G, Pacciarelli D, Pacifici A (2002) Optimally balancing assembly lines with different workstations. Discrete Appl Math 118(1):99–113

    Article  MathSciNet  Google Scholar 

  14. Rubinovitz J, Bukchin J, Lenz E (1993) RALB–A heuristic algorithm for design and balancing of robotic assembly lines. CIRP Ann Manuf Technol 42(1):497–500

    Article  Google Scholar 

  15. Bukchin J, Tzur M (2000) Design of flexible assembly line to minimize equipment cost. IIE Trans 32(7):585–598

    Google Scholar 

  16. Tsai D-M, Yao M-J (1993) A line-balance-based capacity planning procedure for series-type robotic assembly line. Int J Prod Res 31(8):1901–1920

    Article  Google Scholar 

  17. Kim H, Park S (1995) A strong cutting plane algorithm for the robotic assembly line balancing problem. Int J Prod Res 33(8):2311–2323

    Article  Google Scholar 

  18. Yoosefelahi A, Aminnayeri M, Mosadegh H, Ardakani HD (2012) Type II robotic assembly line balancing problem: an evolution strategies algorithm for a multi-objective model. J Manuf Syst 31(2):139–151

    Article  Google Scholar 

  19. Daoud S, Chehade H, Yalaoui F, Amodeo L (2014) Solving a robotic assembly line balancing problem using efficient hybrid methods. J Heuristics 20(3):235–259

    Article  Google Scholar 

  20. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168(3):666–693

    Article  MathSciNet  Google Scholar 

  21. Sörensen K, Glover FW (2013) Metaheuristics. In: Gass S, Fu M (eds) Encyclopedia of operations research and management science. Springer, New York, pp 960–970

  22. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174

    Article  Google Scholar 

  23. Atasagun Y, Kara Y (2013) Bacterial foraging optimization algorithm for assembly line balancing. Neural Comput Appl 25(1):237–250

    Article  Google Scholar 

  24. Sivasankaran P, Shahabudeen P (2014) Literature review of assembly line balancing problems. Int J Adv Manuf Technol 73(9–12):1665–1694

    Article  Google Scholar 

  25. Ghodrati A, Lotfi S (2012) A hybrid CS/PSO algorithm for global optimization. In: Pan J-S, Chen S-M, Nguyen N (eds) Intelligent information and database systems. Springer, Heidelberg, pp 89–98

  26. Noroozi A, Mokhtari H, Kamal Abadi IN (2013) Research on computational intelligence algorithms with adaptive learning approach for scheduling problems with batch processing machines. Neurocomputing 101:190–203

    Article  Google Scholar 

  27. Mukund Nilakantan J, Ponnambalam S (2012) An efficient PSO for type II robotic assembly line balancing problem. In: Proceedings of IEEE international conference on automation science and engineering (CASE), pp 600–605

  28. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  29. Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195

    Article  Google Scholar 

  30. Hu X (2006) PSO tutorial http://www.swarmintelligence.org/tutorials.php

  31. Huang K-W, Chen J-L, Yang C-S, Tsai C-W (2014) A memetic particle swarm optimization algorithm for solving the DNA fragment assembly problem. Neural Comput Appl 1–12. doi:10.1007/s00521-014-1659-0

  32. Ponnambalam S, Aravindan P, Naidu GM (2000) A multi-objective genetic algorithm for solving assembly line balancing problem. Int J Adv Manuf Technol 16(5):341–352

    Article  Google Scholar 

  33. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. Proc World Congr Nat Biol Inspired Comput NaBIC 2009:210–214

    Article  Google Scholar 

  34. Burnwal S, Deb S (2013) Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. Int J Adv Manuf Technol 64(5–8):951–959

    Article  Google Scholar 

  35. Long W, Liang X, Huang Y, Chen Y (2014) An effective hybrid cuckoo search algorithm for constrained global optimization. Neural Comput Appl 25(3–4):911–926

    Article  Google Scholar 

  36. Davis L (1985) Applying adaptive algorithms to epistatic domains. In: Proceedings of IJCAI, pp 162–164

  37. Rubinovitz J, Levitin G (1995) Genetic algorithm for assembly line balancing. Int J Prod Econ 41(1):343–354

    Article  Google Scholar 

  38. Valian E, Mohanna S, Tavakoli S (2011) Improved cuckoo search algorithm for global optimization. Int J Commun Inf Technol 1(1):31–44

    Google Scholar 

  39. Scholl A (1995) Data of assembly line balancing problems. Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL)

  40. Gunther RE, Johnson GD, Peterson RS (1983) Currently practiced formulations for the assembly line balance problem. J Oper Manag 3(4):209–221

    Article  Google Scholar 

  41. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mukund Nilakantan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukund Nilakantan, J., Ponnambalam, S.G., Jawahar, N. et al. Bio-inspired search algorithms to solve robotic assembly line balancing problems. Neural Comput & Applic 26, 1379–1393 (2015). https://doi.org/10.1007/s00521-014-1811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1811-x

Keywords