Skip to main content

Advertisement

Log in

An efficient segmentation technique for Devanagari offline handwritten scripts using the Feedforward Neural Network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this research work, we have proposed a segmentation technique for words and characters of Devanagari offline handwritten scripts. Due to complex structures and high unevenness in writing styles, recognition of words and characters from the unconstrained scripts has become a burning vicinity of interest for researchers. The proposed Pixel Plot and Trace and Re-plot and Re-trace (PPTRPRT) technique extracts text region from Devanagari offline handwritten scripts and lead iterative processes for segmentation of text lines along with skew and de-skew operations. The outcomes of iterations are used in pixel-space-based word segmentation, and the segmented words are used in segmentation of characters. Moreover, PPTRPRT perform various normalization steps to allow deviation in pen breadth and slant in inscription. Investigational outcome shows that the proposed technique is competent to segment characters from Devanagari offline handwritten scripts, and accuracy of outcomes is up to 99.578 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jayadevan R, Kolhe SR, Patil PM, Pal U (2011) Offline recognition of Devanagari script: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev. ISSN 1094-6977, pp. 782–976. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5699408&queryText%3DDevanagari+handwritten+script+segmentation

  2. Sahu N, Raman NK (2013) An efficient handwritten Devanagari characters recognition system using neural network. In: International multi-conference on automation, computing communication, control and compressed sensing (iMac4s), IEEE. ISBN 978-1-4673-5089-1, pp. 173–177. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6526403&queryText%3DDevanagari+handwritten+script+segmentation

  3. Yadav N, Chaudhury S, Kalra P (2013) Most discriminative primitive selection for identity determination using handwritten Devanagari Script. In: 12th international conference on document analysis and recognition (ICDAR), IEEE. ISSN 1520-5363, pp. 1390–1394. Available:http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6628842&queryText%3DDevanagari+handwritten+script+segmentation

  4. Wshah S, Kumar G, Govindaraju V (2012) Script independent word spotting in offline handwritten documents based on hidden Markov models. In: 2012 international conference on frontiers in handwriting recognition (ICFHR). ISBN 978-1-4673-2262-1, pp. 14–19. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6424364&queryText%3DDevanagari+handwritten+script+segmentation

  5. Wshah S, Kumar G, Govindaraju V (2012) Multilingual word spotting in offline handwritten documents. In: 21st international conference on pattern recognition (ICPR), IEEE. ISBN 978-1-4673-2216-4, pp. 310–313. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6460134&queryText%3DDevanagari+handwritten+script+segmentation

  6. Deshpande PS, Malik L, Arora S (2006) Characterizing hand written Devanagari characters using evolved regular expressions. In: IEEE region 10 conference TENCON 2006. ISBN 1-4244-0548-3, pp. 1–4. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4142173&queryText%3DDevanagari+handwritten+script+segmentation

  7. Rahul PV, Gaikwad AN (2012) Multistage recognition approach for handwritten Devanagari script recognition. In: 2012 World congress on information and communication technologies (WICT). ISBN 978-14673-4806-5, pp. 651–656. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6409156&queryText%3DDevanagari+handwritten+script+segmentation

  8. Pal U, Roy RK, Kimura F (2012) Multi-lingual city name recognition for indian postal automation. In: 2012 International conference on frontiers in handwriting recognition (ICFHR). ISBN 978-1-4673-2262-1, pp. 169–173. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6424387&queryText%3DDevanagari+handwritten+script+segmentation

  9. Doiphode A, Ragha L (2011) Novel approach for segmentation of handwritten touching characters from Devanagari words. Das VV, Thankachand N (eds) CIIT 2011 Springer: Berlin. Vol. 250, pp. 621–623. Available: http://link.springer.com/chapter/10.1007%2F978-3-642-25734-6_106#page-2

  10. Sankaran N, Neelappa A, Jawahar CV (2013) Devanagari text recognition: a transcription based formulation. In: 12th International conference on document analysis and recognition (ICDAR). ISSN 1520-5363, pp. 678–682. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6628704&queryText%3DDevanagari+script+segmentation

  11. Kumar M, Jindal MK, Sharma RK (2011) Review on OCR for handwritten indian scripts character recognition, advances in digital image processing and information technology. In: First international conference on digital image processing and pattern recognition, DPPR 2011. ISBN 978-3-642-24054-6, pp. 268–276. Available: http://link.springer.com/chapter/10.1007%2F978-3-642-24055-3_28

  12. Wshah S, Kumar G, Govidaraju V (2014) Statistical script independent word spotting in offline handwritten documents. Pattern Recognit 47(3):1039–1050. Available : http://www.sciencedirect.com/science/article/pii/S0031320313003919

  13. Basu S, Das N, Sarkar R, Kundu M, Nasipuri M, Basu DK (2010) A novel framework for automatic sorting of postal documents with multi-script address blocks. Pattern Recognit 43(10):3507–3521. Available: http://www.sciencedirect.com/science/article/pii/S0031320310002426

  14. Hassan E, Chaudhury S, Yadav N, Kalra P, Gopal M (2014) Off-line hand written input based identity determination using multi kernel feature combination. Pattern Recognit Lett 35:113–119. Available: http://www.sciencedirect.com/science/article/pii/S0167865513001955

  15. Shaw B, Parui SK, Shridhar M (2008) A segmentation based approach to offline handwritten Devanagari word recognition. In: International conference on information technology, (ICIT ‘08). ISBN 978-1-4244-37645-0, pp. 256–257. Available: http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D4731338%26userType%3Dinst&denyReason=-133&arnumber=4731338&productsMatched=null&userType=inst/

  16. Sharma N, Pal U, Kimura F, Pal S (2006) Recognition of offline handwritten Devnagari characters using quadratic classifier. In: Proceedings indian conference on computer vision graphics and image processing. pp. 805–816. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.333.2508

  17. Deshpande PS, Malik L, Arora S (2008) Fine classification & recognition of hand written Devnagari characters with regular expressions & minimum edit distance method. J Comput 3(5):11–17. ISBN 1796-203X. Available: http://ojs.academypublisher.com/index.php/jcp/article/view/03051117

  18. Shaw B, Parui SK, Shridhar M (2008) Off-line handwritten Devanagari word recognition: a holistic approach based on directional chain code feature and HMM. In: International conference on information technology, 2008 (ICIT’08). ISBN 978-1-4244-3745-0, pp. 203–208

  19. Hanmandlu M, Murthy OVR, Madasu VK (2007) Fuzzy model based recognition of handwritten hindi characters. In: 9th Biennial conference of the Australian pattern recognition society on digital image computing techniques and applications. ISBN 0-7695-3067-2, pp. 454–461. Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4426832&abstractAccess=no&userType=inst

  20. Arora S, Bhattacharjee D, Nasipuri M, Basu DK, Kundu M (2010) Recognition of non-compound handwritten Devanagari characters using a combination of MLP and minimum edit distance. Int J Comput Sci Secur (IJCSS) 4(1):1–14 Available: http://arxiv.org/ftp/arxiv/papers/1006/1006.5908.pdf

  21. Kumar S (2009) Performance comparison of features on Devanagari hand printed dataset. Int J Recent Trends Eng 1(2):33–37. Available: http://www.academypublisher.com/ijrte/vol01/no02/ijrte0102033037.pdf

  22. Pal U, Sharma N, Wakabayashi T, Kimura F (2007) Off-line handwritten character recognition of Devnagari script. In: Ninth international conference on document analysis and recognition. ISBN 978-0-7695-2822-9, vol. 1, pp. 496–500. Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4378759&abstractAccess=no&userType=inst

  23. Mane V, Ragha L (2009) Handwritten character recognition using elastic matching and PCA. In: International conference on advances in computing, communication and control (ICAC3’09). pp. 410–415. Available: http://robotics.csie.ncku.edu.tw/HCI_Project_2010/P78991121_%E9%84%AD%E8%A9%A0%E4%B9%8B/ICACCC2009%20Handwritten%20character%20recognition%20using%20elastic%20matching%20and%20PCA.pdf

  24. Pal U, Chanda S, Wakabayashi T, Kimura F (2008) Accuracy improvement of Devnagari character recognition combining SVM and MQDF. In: 11th International conference on frontiers handwriting recognition. pp. 367–372. Available: http://www.cenparmi.concordia.ca/ICFHR2008/Proceedings/papers/cr1080.pdf

  25. Arora S, Bhatcharjee D, Nasipuri M, Malik L (2007) A two stage classification approach for handwritten Devanagari characters. In: IEEE International conference on computational intelligence and multimedia applications. ISBN 0-7695-3050-8, Vol. 2, pp. 399–403. Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4426729&abstractAccess=no&userType=inst

  26. Arora S, Bhattacharjee D, Nasipuri M, Basu DK, Kundu M, Malik L (2009) Study of different features on handwritten Devnagari character. In: 2nd International conference on emerging trends in engineering and technology (ICETET). ISBN 978-1-4244-5250-7, pp. 929–933. Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5395510&abstractAccess=no&userType=inst

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaka, V.P., Sharma, M.K. An efficient segmentation technique for Devanagari offline handwritten scripts using the Feedforward Neural Network. Neural Comput & Applic 26, 1881–1893 (2015). https://doi.org/10.1007/s00521-015-1844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1844-9

Keywords