Skip to main content
Log in

A spectral–textural kernel-based classification method of remotely sensed images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Most studies have been based on the original computation mode of semivariogram and discrete semivariance values. In this paper, a set of texture features are described to improve the accuracy of object-oriented classification in remotely sensed images. So, we proposed a classification method support vector machine (SVM) with spectral information and texture features (ST-SVM), which incorporates texture features in remotely sensed images into SVM. Using kernel methods, the spectral information and texture features are jointly used for the classification by a SVM formulation. Then, the texture features were calculated based on segmented block matrix image objects using the panchromatic band. A comparison of classification results on real-world data sets demonstrates that the texture features in this paper are useful supplement information for the spectral object-oriented classification, and proposed ST-SVM classification accuracy than the traditional SVM method with only spectral information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murray H, Lucieer A, Williams R (2010) Texture-based classification of sub-antarctic vegetation communities on Heard Island. Int J Appl Earth Obs Geoinf 12:138–187

    Article  Google Scholar 

  2. Yan H, Anzhi Y, Su W, Daoliang L, Ming L, Yijun J, Chao Z (2008) Texture feature extraction for land-cover classification of remote sensing data in land consolidation district using semi-variogram analysis. WSEAS Trans Comput 7:857–923

    Google Scholar 

  3. Farrokhnia F, Jain AK (1991) A multi-channel filtering approach to texture segmentation. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society Press, Maui, pp 364–434

  4. Fogel I, Sagi D (1989) Gabor filters as texture discriminator. Biol Cybern 61:103–116

    Article  Google Scholar 

  5. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18:837–879

    Article  Google Scholar 

  6. Tuceryan M, Jain AK (1998) Texture analysis. In: Chen CH, Pau LF, Wagn PSP (eds) Handbook of pattern recognition and computer vision. World Scientific Publishing Company, Hackensack, pp 207–255

    Google Scholar 

  7. Tuceryan M, Ahuja N (1990) Extraction of early perceptual structure in dot patterns: integrating region, boundary, and component gestalt. Comput Vis Graph Image Process 49:279–359

    Article  Google Scholar 

  8. Cesmeli E, Wang DL (2001) Texture segmentation using Gaussian-Markov random fields and neural oscillator networks. IEEE Trans Neural Netw 12:394–404

    Article  Google Scholar 

  9. Chaudhuri BB, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17:72–79

    Article  Google Scholar 

  10. Maillard P (2003) Comparing texture analysis methods through classification. Photogramm Eng Remote Sens 69:357–424

    Article  Google Scholar 

  11. Su W, Zhang C, Yang J, Wu H, Deng L, Yue A, Chen M (2012) Analysis of wavelet packet and statistical textures for object oriented classification of forest-agriculture ecotones using SPOT 5 imagery. Int J Remote Sens 33:3557–3636

    Article  Google Scholar 

  12. Atkinson PM, Lewis P (2000) Geostatistical classification for remote sensing: an introduction. Comput Geosci 26:361–432

    Article  Google Scholar 

  13. Chica-Olmo M, Abarca-Hernandez F (2000) Computing geostatistical image texture for remotely sensed data classification. Comput Geosci 26:373–456

    Article  Google Scholar 

  14. Miranda FP, Fonseca LEN, Carr JR (1998) Semivariogram textural classification of JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the amazon rainforest. Int J Remote Sens 19:549–605

    Article  Google Scholar 

  15. Yue A, Zhang C, Yang J, Su W, Yun W, Zhu D (2013) Texture extraction for object-oriented classification of high spatial resolution remotely sensed images using a semivariogram. Int J Remote Sens 34(11):3736–3759. doi:10.1080/01431161.2012.759298

    Article  Google Scholar 

  16. Ohanian PP, Dubes RC (1992) Perfor mance evaluation for four classes of textural features. Pattern Recognit 25:819–852

    Article  Google Scholar 

  17. Lloyd CD, Berberoglu S, Curran PJ, Atkinson PM (2004) A comparison of texture measures for the per-field classification of mediterranean land cover. Int J Remote Sens 25:3943–4008

    Article  Google Scholar 

  18. Su W, Li J, Chen YH, Liu ZG, Zhang JS, Low TM, Suppiah I, Hashim SAM (2008) Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int J Remote Sens 29:3105–3122

    Article  Google Scholar 

  19. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  20. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  21. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999

    Article  Google Scholar 

  22. Varshney PK, Arora MK (2004) Advanced image processing techniques for remotely sensed hyperspectral data. Springer, Berlin

    Book  Google Scholar 

  23. Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proceedings of computer vision and pattern recognition, pp 130–136

  24. Deniz O, Castrillon M, Hernandez M (2003) Face recognition using independent component analysis and support vector machines. Pattern Recognit Lett 24(13):2153–2157

    Article  Google Scholar 

  25. Chapelle O, Haffner P, Vapnik VN (1999) Support vector machines for histogram-based image classification. IEEE Trans Neural Netw 10(5):1055–1064

    Article  Google Scholar 

  26. Guo G, Li S (2003) Content-based audio classification and retrieval by support vector machines. IEEE Trans Neural Netw 14(1):209–215

    Article  Google Scholar 

  27. Mukherjee S, Osuna E, Girosi F (1997) Nonlinear prediction of chaotic time series using support vector machines. In: Proceedings of the IEEE workshop on neural networks for signal processing, Amelia Island, pp 511–520

  28. Zhu G, Blumberg DG (2002) Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sens Environ 80(2):233–240

    Article  Google Scholar 

  29. Nemmour H, Chibani Y (2006) Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J Photogramm Remote Sens 61(2):125–133

    Article  Google Scholar 

  30. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  31. Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26(5):1007–1011

    Article  Google Scholar 

  32. Inglada J (2007) Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J Photogramm Remote Sens 62(3):236–248

    Article  Google Scholar 

  33. Gao J, Fan L (2011) Kernel-based weighted discriminant analysis with QR decomposition and its application face recognition. WSEAS Trans Math 10(10):358–367

    MathSciNet  Google Scholar 

  34. Gao J, Li L, Fan L, Xu L (2013) An application of weighted kernel fuzzy discriminant analysis. Adv Comput Math Appl 2(4):329–338

    MathSciNet  Google Scholar 

  35. Gao J, Fan L, Li L, Xu L (2013) A practical application of kernel-based fuzzy discriminant analysis. Int J Appl Math Comput Sci 23(4):887–903

    Article  MathSciNet  MATH  Google Scholar 

  36. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Article  Google Scholar 

  37. Fauvel M, Chanussot J, Benediktsson JA (2012) A spatial–spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit 45(1):381–392

    Article  Google Scholar 

  38. Fauvel M et al (2013) Advances in spectral–spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Article  Google Scholar 

  39. Guo B, Gunn S, Damper R, Nelson J (2008) Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Trans Image Process 17(4):622–629

    Article  MathSciNet  Google Scholar 

  40. Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  41. Mercier G, Girard-Ardhuin F (2006) Partially supervised oil-slick detection by SAR imagery using kernel expansion. IEEE Trans Geosci Remote Sens 44(10):2839–2846

    Article  Google Scholar 

  42. Gao J, Xu L, Shi A, Huang F (2014) A kernel-based block matrix decomposition approach for the classification of remotely sensed images. Appl Math Comput 228:531–545

    Article  MathSciNet  Google Scholar 

  43. Song B, Li J, Mura MD, Li P, Plaza A, Bioucas-Dias JM, Benediktsson JA, Chanussot J (2013) Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2013.2286953

    Google Scholar 

  44. Chen Y, Nasrabadi N, Tran T (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Article  Google Scholar 

  45. Plaza A, Benediktsson JA, Boardman JW et al (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122

    Article  Google Scholar 

  46. Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition. IEEE Trans Electron Comput 14(3):326–334

    Article  MATH  Google Scholar 

  47. Schölkopf B, Smola A (2002) Learning with kernels-support vector machines, regularization, optimization and beyond. MIT Press, Cambridge

    Google Scholar 

  48. Zhang R, Ma J (2008) An improved SVM method P-SVM for classification of remotely sensed data. Int J Remote Sens 29(20):6029–6036

    Article  Google Scholar 

  49. Ulaby FT, Kouyate F, Brisco B et al (1986) Textural infornation in SAR images. IEEE Trans Geosci Remote Sens 24(2):235–245

    Article  Google Scholar 

  50. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  51. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machine. http://www.csie.ntu.edu.tw/cjlin/libsvm

  52. IEEE, GRSS data fusion technical committee (2012). http://www.grss-ieee.org/community/technical-committees/datafusion/

  53. Park CH, Park H (2008) A comparison of generalized linear discriminant analysis algorithms. Pattern Recognit 41:1083–1097

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editor and anonymous referees reviews for their valuable comments and helpful suggestions. In addition, this work is supported by National Natural Science Foundation of China (Grant No. 61271386), and the Graduates’ Research Innovation Program of Higher Education of Jiangsu Province of China (Grant No. CXZZ13-0239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Xu, L. & Huang, F. A spectral–textural kernel-based classification method of remotely sensed images. Neural Comput & Applic 27, 431–446 (2016). https://doi.org/10.1007/s00521-015-1862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1862-7

Keywords

Navigation