Skip to main content

An exponential approach for the system of nonlinear delay integro-differential equations describing biological species living together

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a system of nonlinear delay integro-differential equations with convolution kernels, which arises in biology. This problem characterizes the population dynamics for two separate species. We present an exponential approach based on exponential polynomials for solving this system. This technique reduces the model problem to a matrix equation, which corresponds to a system of nonlinear algebraic equations. Also, illustrative examples related to biological species living together are given to demonstrate the validity and applicability of technique. The comparisons are made with the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Pougaza D-B (2007) The Lotka integral equation as a stable population model. Postgraduate Essay, African Institute for Mathematical Sciences (AIMS), Muizenberg

    Google Scholar 

  3. Kopeikin ID, Shishkin VP (1984) Integral form of the general solution of equations of steady-state thermoelasticity. J Appl Math Mech (PMM U.S.S.R.) 48(1):117–119

    Article  MathSciNet  MATH  Google Scholar 

  4. Lotka AJ (1939) On an integral equation in population analysis. Ann Math Stat 10:144–161

    Article  MATH  Google Scholar 

  5. Abdul J (1999) Introduction to integral equations with applications. Wiley, New York

    MATH  Google Scholar 

  6. Khan Y, Va´zquez-Leal H, Wu Q (2013) An efficient iterated method for mathematical biology model. Neural Comput Appl 23:677–682

    Article  Google Scholar 

  7. Dehghan M, Shakeri F (2008) Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Progr Electromag Res 78:361–376

    Article  Google Scholar 

  8. Khan Y, Taghipour R, Falahian M, Nikkar A (2013) A new approach to modified regularized long wave equation. Neural Comput Appl 23:1335–1341

    Article  Google Scholar 

  9. Elmer CE, Van Vleck ES (2002) A variant of Newton’s method for solution of traveling wave solutions of bistable differential-difference equation. J Dyn Differ Equ 14:493–517

    Article  MATH  Google Scholar 

  10. Elmer CE, van Vleck ES (2001) Travelling wave solutions for bistable differential-difference equations with periodic diffusion. SIAM J Appl Math 61:1648–1679

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan Y (2013) A method for solving nonlinear time dependent drainage model. Neural Comput Appl 23:411–415

    Article  Google Scholar 

  12. Babolian E, Biazar J (2002) Solving the problem of biological species living together by Adomian decomposition method. Appl Math Comput 129:339–343

    MathSciNet  MATH  Google Scholar 

  13. Shakeri F, Dehghan M (2008) Solution of a model describing biological species living together using the variational iteration method. Math Comput Model 48:685–699

    Article  MathSciNet  MATH  Google Scholar 

  14. Yousefi SA (2011) Numerical solution of a model describing biological species living together by using Legendre multiwavelet method. Int J Non Sci 11(1):109–113

    MathSciNet  MATH  Google Scholar 

  15. Shakourifar M, Dehghan M (2008) On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments. Computing 82:241–260

    Article  MathSciNet  MATH  Google Scholar 

  16. Adomian G (1990) A review of the decomposition method and some recent results for nonlinear equations. Math Comput Model 13(7):17–43

    Article  MathSciNet  MATH  Google Scholar 

  17. Batiha B, Noorani MSM, Hashim I (2007) Variational iteration method for solving multispecies LotkaVolterra equations. Comput Math Appl 54:903–909

    Article  MathSciNet  MATH  Google Scholar 

  18. Parand K, Razzaghi M (2004) Rational Chebyshev tau method for solving Volterra’s population model. Appl Math Comput 149:893–900

    MathSciNet  MATH  Google Scholar 

  19. Yüzbaşı Ş (2012) Bessel collocation approach for solving continuous population models for single and interacting species. Appl Math Model 36(8):3787–3802

    Article  MathSciNet  MATH  Google Scholar 

  20. Sedaghat S, Ordokhani Y, Dehghan M (2014) On spectral method for Volterra functional integro-differential equations of neutral type. Numer Funct Anal Optim 35:223–239

    Article  MathSciNet  MATH  Google Scholar 

  21. Yüzbaşı Ş (2012) A numerical approach to solve the model for HIV infection of CD4+T cells. Appl Math Model 36(12):5876–5890

    Article  MathSciNet  Google Scholar 

  22. Pamuk S (2005) The decomposition method for continuous population models for single and interacting species. Appl Math Comput 163:79–88

    MathSciNet  MATH  Google Scholar 

  23. Dehghan M, Salehi R (2010) Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput Phys Commun 181:1255–1265

    Article  MathSciNet  MATH  Google Scholar 

  24. Pamuk S, Pamuk N (2010) He’s homotopy perturbation method for continuous population models for single and interacting species. Comput Math Appl 59:612–621

    Article  MathSciNet  MATH  Google Scholar 

  25. Yüzbaşı Ş (2011) A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics. Math Method Appl Sci 34(18):2218–2230

    MathSciNet  MATH  Google Scholar 

  26. Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique. Int J Numer Method Biomed Eng 26:705–715

    MathSciNet  MATH  Google Scholar 

  27. Merdan M (2007) Homotopy perturbation method for solving a model for HIV infection of CD4+T cells, Istanb. Commer Univ J Sci 12:39–52

    Google Scholar 

  28. Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve turing models in the biological pattern formation. Comput Math Appl 62:4322–4336

    Article  MathSciNet  MATH  Google Scholar 

  29. Yüzbaşı Ş (2013) A numerical approximation for Volterra’s population growth model with fractional order. Appl Math Model 37(5):3216–3227

    Article  MathSciNet  Google Scholar 

  30. Khan Y, Vázquez-Leal H, Faraz N (2013) An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. Appl Math Model 37:2702–2708

    Article  MathSciNet  Google Scholar 

  31. Khan Y (2014) A novel Laplace decomposition method for non-linear stretching sheet problem in the presence of MHD and slip condition. Int J Numer Methods Heat Fluid Flow 24:73–85

    Article  MathSciNet  Google Scholar 

  32. Akyüz-Daşcıoğlu A, Sezer M (2005) Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J Franklin Inst 342:688–701

    Article  MathSciNet  MATH  Google Scholar 

  33. Yüzbaşı Ş, Şahin N, Sezer M (2011) Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput Math Appl 61(10):3079–3096

    Article  MathSciNet  MATH  Google Scholar 

  34. Khan Y, Sayevand K, Fardi M, Ghasemi M (2014) A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equation. Appl Math Comput 249:229–236

    MathSciNet  Google Scholar 

  35. Yüzbaşı Ş, Sezer M (2013) An exponential matrix method for solving systems of linear differential equations. Math Method Appl Sci 36(3):336–348

    Article  MathSciNet  MATH  Google Scholar 

  36. Alharbi F (2010) Predefined exponential basis set for half-bounded multi domain spectral method. Appl Math 1:146–152

    Article  Google Scholar 

  37. Alipour MM, Domairry G, Davodi AG (2011) An application of exp-function method to approximate general and explicit solutions for nonlinear Schrodinger equations. Numer Method Part Differ Eqs 27:1016–1025

    Article  MathSciNet  MATH  Google Scholar 

  38. Shanmugam R (1998) Generalized exponential and logarithmic polynomials with statistical applications. Int J Math Educ Sci Technol 19(5):659–669

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu M, Chen L, Zeng Z, Li ZB (2010) Reachability analysis of rational eigenvalue linear systems. Int J Syst Sci 41(12):1411–1419

    Article  MathSciNet  MATH  Google Scholar 

  40. Ouerdiane H, Ounaies M (2012) Expansion in series of exponential polynomials of mean-priodic functions. Complex Var Elliptic Eqs 57(5):469–487

    Article  MathSciNet  MATH  Google Scholar 

  41. Debrecen LS (2000) On the extension of exponential polynomials. Math Bohem 125(3):365–370

    MathSciNet  Google Scholar 

  42. Ross K (1963) Abstract harmonic analysis I, II. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The first author is supported by the Scientific Research Project Administration of Akdeniz University. We would like to thank all of the referees separately for their constructive comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şuayip Yüzbaşı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüzbaşı, Ş., Sezer, M. An exponential approach for the system of nonlinear delay integro-differential equations describing biological species living together. Neural Comput & Applic 27, 769–779 (2016). https://doi.org/10.1007/s00521-015-1895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1895-y

Keywords