Skip to main content
Log in

ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Reinforced concrete slabs, just as the other structural elements, are highly affected by the high temperatures. Due to the decrease in strength of reinforced concrete members under high temperature, bearing moment capacity of reinforced concrete slabs also decreases. In this study, a prediction model is investigated in order to determine the bearing moment capacities of reinforced concrete slabs under high temperature. Pre-calculated moment capacities of slabs exposed to fire are predicted by the implementation of adaptive neuro-fuzzy inference system (ANFIS) and the prediction performance of ANFIS model is investigated. The bending capacities of slabs with different concrete characteristics and different times of exposure are calculated. High temperature resulting from the duration of fire exposure is calculated as a function of time in accordance with ISO 834. The temperature distribution inside the slab is determined by the adoption of a steady-state one-dimensional heat transfer. The slab was separated into slim slices and the heat in each slice is determined depending on the time of exposure. Forces and resistance of materials under fire exposure are calculated by applying the reduction coefficients in Eurocode 2. Results confirm the high prediction capability of ANFIS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

T :

Temperature based on time of fire exposure (°C)

t :

Time of fire exposure (min)

T a :

Ambient temperature (°C)

k c :

Concrete compressive strength reduction coefficient

f CT :

Local compressive strength of concrete (at increasing temperature)

f C20 °C :

Concrete compressive strength at 20 °C (N/mm2)

k s :

Steel tensile strength reduction coefficient

f suT :

Local tensile strength of steel (at increasing temperature) (N/mm2)

f su20 °C :

Steel tensile strength at 20 °C (N/mm2)

Q :

Heat transfer rate

A :

Surface area of slab (mm2)

T 1, T ∞2 :

Temperatures on both faces of slab with no internal heat transfer (°C)

T 1 :

Temperature on the slab face that is exposed to fire (°C)

T 2 :

Temperature on the slab face that is not exposed to fire (°C)

h :

Height of slab (mm)

h 1 , h 2 :

Heat transfer coefficients (W/m2 K)

k :

Heat transfer coefficient of concrete (W/mK)

R t :

Total heat resistance

y :

A point inside the slab

T(y) :

Temperature at a point inside the slab (°C)

D :

Slice number of slab

F s :

Tensile force of reinforcement (N)

k si :

Steel tensile strength reduction coefficient in ith slice

f yd :

Yield strength of reinforcement at 20 °C (N/mm2)

A si :

Reinforcement area in ith slice (mm2)

F c :

Concrete compressive strength (N)

f cd :

Concrete compressive strength at 20 °C (N/mm2)

k ci :

Concrete compressive strength reduction coefficient in ith slice

Δy :

Height of each slice of slab (depth)

a :

Compressive stress block depth (mm)

M u :

Ultimate moment capacity of slab (N mm)

d :

Effective depth of slab (mm)

d′:

Concrete cover of slab (mm)

i :

Sequence of slice

O n,i :

Output of ith node at nth layer

μ Ai (x):

Membership grade of A at ith node

μ Bi (y):

Membership grade of B at ith node

w i :

Multiplication of signals at ith node

\(\bar{w}_{i}\) :

Firing rate of ith node

\(\bar{w}_{i} f_{i}\) :

Output value of ith node

O i :

Calculated moment capacity value of ith data

P i :

Moment capacity value of ith data predicted by NN model

N :

Number of data used for training and testing of NN

R 2 :

Coefficient of determination

RMSE:

Root-mean-squared error (N mm)

MBE:

Mean bias error (N mm)

References

  1. Lee S-C (2003) Prediction of concrete strength using artificial neural networks. Eng Struct 25(7):849–857

    Article  Google Scholar 

  2. Akbulut S, Hasiloglu AS, Pamukcu S (2004) Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system. Soil Dyn Earthq Eng 24(11):805–814

    Article  Google Scholar 

  3. Özsoy İ, Fırat M (2004) Estimation of lateral displacements in a reinforced concrete structure with flat slabs by using artificial neural networks (in Turkish). DEÜ Sci Eng J 6(1):51–63

    Google Scholar 

  4. Hoła J, Schabowicz K (2005) Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests. J Civ Eng Manag 11(1):23–32

    Google Scholar 

  5. Topçu İB, Sarıdemir M (2007) Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput Mater Sci 41(1):117–125

    Article  Google Scholar 

  6. Topçu İB, Karakurt C, Sarıdemir M (2008) Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Mater Des 29(10):1986–1991

    Article  Google Scholar 

  7. Karahan O, Tanyildizi H, Atis CD (2008) An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash. J Zhejiang Univ Sci A 9(11):1514–1523

    Article  MATH  Google Scholar 

  8. Bilgehan M, Turgut P (2010) The use of neural networks in concrete compressive strength estimation. Comput Concr 7(3):271–283

    Article  Google Scholar 

  9. Bilgehan M, Turgut P (2010) Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity. Res Nondestr Eval 21(1):1–17

    Article  Google Scholar 

  10. Bilgehan M, Gürel MA, Pekgökgöz RK, Kısa M (2012) Buckling load estimation of cracked columns using artificial neural network modeling technique. J Civ Eng Manag 18(4):568–579

    Article  Google Scholar 

  11. Yenigün K, Bilgehan M, Gerger R, Mutlu M (2010) A comparative study on prediction of sediment yield in the Euphrates basin. Int J Phys Sci 5(5):518–534

    Google Scholar 

  12. Bilgehan M (2011) A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches. Nondestruct Test Eval 26(01):35–55

    Article  Google Scholar 

  13. Nazari A (2013) Fuzzy logic-based prediction of compressive strength of lightweight geopolymers. Neural Comput Appl 23(3–4):865–872

    Article  Google Scholar 

  14. Tarighat A (2013) Model based damage detection of concrete bridge deck using Adaptive neuro-fuzzy inference system. Int J Civ Eng 11(3A):170–181

    Google Scholar 

  15. Yuan Z, Wang L-N, Ji X (2014) Prediction of concrete compressive strength: research on hybrid models genetic based algorithms and ANFIS. Adv Eng Softw 67:156–163

    Article  Google Scholar 

  16. Dilmaç H, Demir F (2013) Stress–strain modeling of high-strength concrete by the adaptive network-based fuzzy inference system (ANFIS) approach. Neural Comput Appl 23(1):385–390

    Article  Google Scholar 

  17. Chen B, Li C, Chen L (2009) Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Saf J 44(7):997–1002

    Article  Google Scholar 

  18. Erdem H (2009) Nominal moment capacity of box reinforced concrete beams exposed to fire. Turk J Eng Environ Sci 33:31–44

    MathSciNet  Google Scholar 

  19. Xu Y-y, Wu B (2009) Fire resistance of reinforced concrete columns with L-, T-, and + -shaped cross-sections. Fire Saf J 44(6):869–880

    Article  Google Scholar 

  20. Ellobody E, Bailey CG (2009) Modelling of unbonded post-tensioned concrete slabs under fire conditions. Fire Saf J 44(2):159–167

    Article  Google Scholar 

  21. Bailey CG, Ellobody E (2009) Fire tests on bonded post-tensioned concrete slabs. Eng Struct 31(3):686–696

    Article  Google Scholar 

  22. Bailey CG, Ellobody E (2009) Whole-building behaviour of bonded post-tensioned concrete floor plates exposed to fire. Eng Struct 31(8):1800–1810

    Article  Google Scholar 

  23. Tanyildizi H (2009) Fuzzy logic model for prediction of mechanical properties of lightweight concrete exposed to high temperature. Mater Des 30(6):2205–2210

    Article  Google Scholar 

  24. Erdem H (2010) Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks. Adv Eng Softw 41(2):270–276

    Article  MATH  Google Scholar 

  25. ISO-834 (1975) Fire resistance tests-elements of building construction Part 1–9. International Standard Organization

  26. En B (2004) 1–2: 2004 Eurocode 2: design of concrete structures-Part 1–2: general rules-structural fire design. European Standards, London

    Google Scholar 

  27. Genceli OF (2000) Solved problems on heat conduction (in Turkish). Birsen Publishing, Istanbul, Turkey

    Google Scholar 

  28. Yunus AC (2003) Heat transfer: a practical approach. MacGraw Hill, New York

    Google Scholar 

  29. Erdem H (2008) High temperature effects on bearing capacity of reinforced concrete slabs (in Turkish). Paper presented at the ÇU 30th Anniversary Symposium Adana, Turkey, 16–17 Oct. 2008

  30. Madandoust R, Bungey JH, Ghavidel R (2012) Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comput Mater Sci 51(1):261–272

    Article  Google Scholar 

  31. Lin YC, Zhang J, Zhong J (2008) Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput Mater Sci 43(4):752–758

    Article  MathSciNet  Google Scholar 

  32. Bhadeshia HKDH (1999) Neural networks in materials science. ISIJ Int 39(10):966–979

    Article  Google Scholar 

  33. Bahrami A, Anijdan SHM, Hosseini HRM, Shafyei A, Narimani R (2005) Effective parameters modeling in compression of an austenitic stainless steel using artificial neural network. Comput Mater Sci 34(4):335–341

    Article  Google Scholar 

  34. Chun MS, Biglou J, Lenard JG, Kim JG (1999) Using neural networks to predict parameters in the hot working of aluminum alloys. J Mater Process Technol 86(1–3):245–251

    Article  Google Scholar 

  35. Kim DJ, Kim BM (2000) Application of neural network and FEM for metal forming processes. Int J Mach Tools Manuf 40(6):911–925

    Article  Google Scholar 

  36. Topçu IB, Saridemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 41(3):305–311

    Article  Google Scholar 

  37. Sargolzaei J, Ahangari B (2010) Thermal behavior prediction of MDPE nanocomposite/cloisite Na using artificial neural network and neuro-fuzzy tools. J Nanotechnol Eng Med 1:041012

    Article  Google Scholar 

  38. Zadeh LA (1965) Fuzzy sets. Inf Contr 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  39. Tigdemir M, Karasahin M, Sen Z (2002) Investigation of fatigue behaviour of asphalt concrete pavements with fuzzy-logic approach. Int J Fatigue 24(8):903–910

    Article  Google Scholar 

  40. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. Syst Man Cybern IEEE Trans 23(3):665–685

    Article  Google Scholar 

  41. Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. Automat Contr IEEE Trans 42(10):1482–1484

    Article  Google Scholar 

  42. Haykin S (2004) Neural networks: a comprehensive foundation. Pearson Prentice Hall, Canada

  43. Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches/estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones. Hydrol Sci J 50(4):683–696

    Google Scholar 

  44. Vassilopoulos AP, Bedi R (2008) Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates. Comput Mater Sci 43(4):1086–1093

    Article  Google Scholar 

  45. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. Syst Man Cybern IEEE Trans 1:116–132

    Article  MATH  Google Scholar 

  46. Vasant P, Bhattacharya A, Sarkar B, Mukherjee SK (2007) Detection of level of satisfaction and fuzziness patterns for MCDM model with modified flexible S-curve MF. Appl Soft Comput 7(3):1044–1054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Bilgehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgehan, M., Kurtoğlu, A.E. ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire. Neural Comput & Applic 27, 869–881 (2016). https://doi.org/10.1007/s00521-015-1902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1902-3

Keywords

Navigation