Skip to main content
Log in

Neural identifier for unknown discrete-time nonlinear delayed systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work proposes a discrete-time nonlinear neural identifier based on a recurrent high-order neural network trained with an extended Kalman filter-based algorithm for discrete-time deterministic multiple-input multiple-output systems with unknown dynamics and time-delay. To prove the semi-globally uniformly ultimately boundedness of the proposed neural identifier, the stability analysis based on the Lyapunov approach is included. Applicability of the proposed identifier is shown via simulation and experimental results, all of them performed under the presence of unknown external and internal disturbances as well as unknown time-delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. MATLAB is a registered trademark of The MathWorks, Inc.

  2. Simulink is a registered trademark of The MathWorks, Inc.

  3. dSPACE is a registered trademark of DSPACE GmbH.

  4. LAB-Volt is a registered trademark of Lab-Volt Systems, Inc.

  5. SENC 50 is a registered trademark of ACU-RITE.

  6. POWERSTAT is a registered trademark of Superior Electric Holding Group LLC.

  7. ControlDesk is a registered trademark of DSPACE GmbH.

References

  1. Alfaro-Ponce M, Argüelles A, Chairez I (2014) Continuous neural identifier for uncertain nonlinear systems with time delays in the input signal. Neural Netw 60:53–66

    Article  MATH  Google Scholar 

  2. Bedoui S, Ltaief M, Abderrahim K (2012) New results on discrete-time delay systems identification. Int J Autom Comput 9(6):570–577

    Article  MATH  Google Scholar 

  3. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166

    Article  Google Scholar 

  4. Boukas E, Liu Z (2002) Deterministic and stochastic time-delay systems. Control Engineering Birkhäuser, Birkhäuser, Boston

    Book  MATH  Google Scholar 

  5. Chen C, Wen GX, Liu YJ, Wang FY (2014) Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Trans Neural Netw Learn Syst Actions 25(6):1217–1226

    Article  Google Scholar 

  6. Fu L, Li P (2013) The research survey of system identification method. In: 2013 5th international conference on intelligent human-machine systems and cybernetics (IHMSC), vol 2. pp 397–401

  7. Ge SS, Tee KP (2005) Adaptive neural network control of nonlinear mimo time-delay systems with unknown bounds on delay functionals. In: Proceedings of the 2005 American control conference, 2005, vol 7. pp 4790–4795

  8. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall International, Englewood Cliffs

    MATH  Google Scholar 

  9. Haykin S (2004) Kalman filtering and neural networks. Wiley, New York

    Google Scholar 

  10. Hermans M, Schrauwen B (2010) One step backpropagation through time for learning input mapping in reservoir computing applied to speech recognition. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS). pp 521–524

  11. Hernandez-Gonzalez M, Sanchez E, Loukianov A. (2008) Discrete-time neural network control for a linear induction motor. In: IEEE international Symposium on intelligent control 2008 (ISIC 2008). pp 1314–1319

  12. Hochreiter S (1998) Recurrent neural net learning and vanishing gradient. Int J Uncertain Fuzziness Knowl Based Syst 6(2):107–116

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong Y, Ren X, Qin H (1996) Neural identification and control of uncertain nonlinear systems with time delay. In: Proceedings of the 35th IEEE conference on decision and control, 1996, vol 4. pp 3802–3803

  14. Krstic M, Bekiaris-Liberis N (2012) Control of nonlinear delay systems: A tutorial. In: 2012 IEEE 51st annual conference on decision and control (CDC). pp 5200–5214

  15. Kurose J, Ross K (2013) Computer networking: a top-down approach. Always Learning. Pearson, London

    Google Scholar 

  16. Leondes C (1998) Neural network systems techniques and applications: advances in theory and applications. Elsevier Science, Amsterdam

    Google Scholar 

  17. Lopez-Franco M, Landa D, Alanis A, Lopez-Franco C, Arana-Daniel N (2014) Discrete-time inverse optimal neural control for a tracked all terrain robot. In: XVI IEEE autumn meeting of power, electronics and computer science ROPEC 2014 international. pp 70–75

  18. Mahmoud M (2000) Robust control and filtering for time-delay systems. Automation and control engineering. CRC Press

  19. Mahmoud M (2010) Switched time-delay systems: stability and control. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Na J, Herrmann G, Ren X, Barber P (2009) Nonlinear observer design for discrete mimo systems with unknown time delay. In: Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference. (CDC/CCC 2009). pp 6137–6142

  21. Ngoc P (2015) Novel criteria for exponential stability of nonlinear differential systems with delay. IEEE Trans Autom Control Actions 60(2):485–490

    Article  MathSciNet  Google Scholar 

  22. Norgaard M (2000) Neural networks for modelling and control of dynamic systems: a practitioner’s handbook. Springer, London

    Book  MATH  Google Scholar 

  23. Rajapakse J, Wang L (2004) Neural information processing: research and development. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Ren X, Rad A (2007) Identification of nonlinear systems with unknown time delay based on time-delay neural networks. IEEE Trans Neural Netw 18(5):1536–1541

    Article  Google Scholar 

  25. Richard JP (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39:1667–1694

    Article  MathSciNet  MATH  Google Scholar 

  26. Rios J, Alanis A, Rivera J, Hernandez-Gonzalez M (2013) Real-time discrete neural identifier for a linear induction motor using a dSPACE DS1104 board. In: The 2013 international joint conference on neural networks (IJCNN). pp 1–6

  27. Rovithakis G, Christodoulou M (2011) Adaptive control with recurrent high-order neural networks: theory and industrial applications. Advances in industrial control. Springer, London

    Google Scholar 

  28. Sanchez E, Alanis A, Garcia A, Loukianov A (2008) Discrete-time high order neural control: trained with Kalman filtering. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Song Y, Grizzle J (1992) The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems. Am Control Conf 1992:3365–3369

    Google Scholar 

  30. Xian-Ming T, Jin-Shou Y (2008) Stability analysis for discrete time-delay systems. In: Fourth international conference on networked computing and advanced information management, 2008 (NCM’08), vol 1. pp 648–651

  31. Xu H, Jagannathan S (2013) Neural network based finite horizon stochastic optimal controller design for nonlinear networked control systems. In: The 2013 international joint conference on neural networks (IJCNN). pp 1–7

  32. Xu H, Jagannathan S (2013) Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming. IEEE Trans Neural Netw Learn Syst 24(3):471–484

    Article  Google Scholar 

  33. Xu Z, Li X (2010) Control design based on state observer for nonlinear delay systems. In: 2010 Chinese control and decision conference (CCDC). pp 1946–1950

  34. Yi S (2010) Time-delay systems: analysis and control using the Lambert W function. World Scientific, Singapore

    Book  MATH  Google Scholar 

  35. Yu W, Sanchez E (2009) Advances in computational intelligence. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Zhong Q (2006) Robust control of time-delay systems. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the support of CONACYT, Mexico, through Projects 106838Y, 156567Y and INFR-229696. They also thank the very useful comments of the anonymous reviewers, which help to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Y. Alanis.

Appendix

Appendix

Proof of Theorem 1

Step 1, for \({\mathbf {V}}\left( k\right)\). First consider, the equation for each i-th neuron \((i=1,...,n)\)

$$\begin{aligned} V_{i}\left( k\right)= & \, \gamma _{i}e_{i}^{2}\left( k\right) +\widetilde{w}_{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \nonumber \\ \Delta V_{i}\left( k\right)= & \, V\left( k+1\right) -V\left( k\right) \nonumber \\= & \, \gamma _{i}e_{i}^{2}\left( k+1\right) \nonumber \\&+\,\widetilde{w}_{i}^{T}\left( k+1\right) P_{i}\left( k+1\right) \widetilde{w}_{i}\left( k+1\right) \nonumber \\&-\,\widetilde{w}_{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) -\gamma _{i}e_{i}^{2}\left( k\right) \end{aligned}$$
(23)

Using (10) and (14) in (23)

$$\begin{aligned} \Delta V_{i}\left( k\right)= & \,\left[ \widetilde{w}_{i}\left( k\right) -\eta _{i}K_{i}\left( k\right) e_{i}\left( k\right) \right] ^{T}[P_{i}\left( k\right) -A_{i}\left( k\right) ] \\ \times&\left[ \widetilde{w}_{i}\left( k\right) -\eta _{i}K_{i}\left( k\right) e_{i}\left( k\right) \right] \\&+\,\gamma _{i}\left[ \widetilde{w}_{i}\left( k\right) z_{i}\left( x(k-l),u(k)\right) +\epsilon _{z_{i}}\right] ^{2} \\&-\,\widetilde{w}_{i}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) -\gamma _{i}e_{i}^{2}\left( k\right) \end{aligned}$$
(24)

with

$$A_{i}\left( k\right) =K_{i}\left( k\right) H_{i}^{\top }\left( k\right) P_{i}\left( k\right) +Q_{i}\left( k\right)$$
(25)

then, (24) can be expressed as

$$\begin{aligned} \Delta V_{i}\left( k\right)= & \, \widetilde{w}_{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \\&-\,\eta _{i}e_{i}\left( k\right) K_{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \\&-\,\widetilde{w}_{i}^{T}\left( k\right) A_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \\&+\,\eta _{i}e_{i}\left( k\right) K_{i}^{T}\left( k\right) A_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \\&-\,\eta _{i}e_{i}\left( k\right) \widetilde{w}_{i}^{T}\left( k\right) P_{i}\left( k\right) K_{i}\left( k\right) \\&+\,\eta _{i}^{2}e_{i}^{2}\left( k\right) K_{i}^{T}\left( k\right) P_{i}\left( k\right) K_{i}\left( k\right) \\&+\,\eta _{i}e_{i}\left( k\right) \widetilde{w}_{i}^{T}\left( k\right) A_{i}\left( k\right) K_{i}\left( k\right) \\&-\,\eta _{i}^{2}e_{i}^{2}\left( k\right) K_{i}^{T}\left( k\right) A_{i}\left( k\right) K_{i}\left( k\right) \\&+\,\gamma _{i}\left( \widetilde{w}_{i}\left( k\right) z_{i}\left( x(k-l),u(k)\right) \right) ^{2} \\&+\,\gamma _{i}2\epsilon _{z_{i}}\widetilde{w}_{i}\left( k\right) z_{i}\left( x(k),u(k)\right) \\&+\,\gamma _{i}\epsilon _{z_{i}}^{2}-\widetilde{w}_{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) -\gamma _{i}e_{i}^{2}\left( k\right) \end{aligned}$$
(26)

Using the inequalities

$$\begin{aligned} X^{T}X+Y^{T}Y\ge & 2X^{T}Y \\ X^{T}X+Y^{T}Y\ge & -2X^{T}Y \\ -\lambda _{\min }\left( P\right) X^{2}\ge & -X^{T}PX\ge -\lambda _{\max }\left( P\right) X^{2} \end{aligned}$$
(27)

which are valid \(\forall X,Y\in \mathfrak {R}^{n}\), \(\forall P\in \mathfrak {R}^{n\times n}, P=P^{T}>0,\) then (26) can be rewritten as

$$\begin{aligned} \Delta V_{i}\left( k\right)\le & -\widetilde{w}_{i}^{T}\left( k\right) A_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \\&-\,\eta _{i}^{2}e_{i}^{2}\left( k\right) K_{i}^{T}\left( k\right) A_{i}\left( k\right) K_{i}\left( k\right) \\&+\,\widetilde{w}_{i}^{T}\left( k\right) \widetilde{w}_{i}\left( k\right) +e_{i}^{2}\left( k\right) \\&+\,\eta _{i}^{2}e_{i}^{2}\left( k\right) K_{i}^{T}\left( k\right) P_{i}\left( k\right) P_{i}^{T}\left( k\right) K_{i}\left( k\right) \\&+\,\eta _{i}^{2}\widetilde{w}_{i}^{T}A_{i}\left( k\right) K_{i}\left( k\right) K_{i}^{T}\left( k\right) A_{i}^{T}\left( k\right) \widetilde{w}_{i}\left( k\right) \\&+\,\eta _{i}^{2}e_{i}^{2}\left( k\right) K_{i}^{T}\left( k\right) P_{i}\left( k\right) K_{i}\left( k\right) \\&+\,2\gamma _{i}\left( \widetilde{w}_{i}\left( k\right) z_{i}\left( x(k-l),u(k)\right) \right) ^{2} \\&+\,2\gamma _{i}\epsilon _{z_{i}}^{2}-\gamma _{i}e_{i}^{2}\left( k\right) \end{aligned}$$
(28)

Then,

$$\begin{aligned} \Delta V_{i}\left( k\right)\le & -\left\| \widetilde{w}_{i}\left( k\right) \right\| ^{2}\lambda _{\min }\left( A_{i}\left( k\right) \right) \\&-\,\eta _{i}^{2}\left| e_{i}\left( k\right) \right| ^{2}\left\| K_{i}\left( k\right) \right\| ^{2}\lambda _{\min }\left( A_{i}\left( k\right) \right) \\&+\,\eta _{i}^{2}\left| e_{i}\left( k\right) \right| ^{2}\left\| K_{i}\left( k\right) \right\| ^{2}\lambda _{\max }^{2}\left( P_{i}\left( k\right) \right) \\&+\,2\eta _{i}^{2}\left| e_{i}\left( k\right) \right| ^{2}\left\| K_{i}\left( k\right) \right\| ^{2} \\&+\,\left\| \widetilde{w}_{i}\left( k\right) \right\| ^{2}\lambda _{\max }\left( P_{i}\left( k\right) \right) \\&+\,\left\| \widetilde{w}_{i}\left( k\right) \right\| ^{2}\lambda _{\max }^{2}\left( A_{i}\left( k\right) \right) \\&+\,2\gamma _{i}\left\| \widetilde{w}_{i}\left( k\right) \right\| ^{2}\left\| z_{i}\left( x(k-l),u(k)\right) \right\| ^{2} \\&+\,2\gamma _{i}\epsilon _{z_{i}}^{2}-\gamma _{i}\left| e_{i}\left( k\right) \right| ^{2} \end{aligned}$$
(29)

Defining

$$\begin{aligned} E_{i}\left( k\right)= & \,\lambda _{\min }\left( A_{i}\left( k\right) \right) -\lambda _{\max }^{2}\left( A_{i}\left( k\right) \right) \\&-\,2\gamma _{i}\left\| z_{i}\left( x(k-l),u(k)\right) \right\| ^{2}+\lambda _{\max }\left( P_{i}\left( k\right) \right) \\ F_{i}\left( k\right)= & \,\gamma _{i}+\eta _{i}^{2}\left\| K_{i}\left( k\right) \right\| ^{2}\lambda _{\min }\left( A_{i}\left( k\right) \right) \\&-\,\eta _{i}^{2}\left\| K_{i}\left( k\right) \right\| ^{2}\lambda _{\max }^{2}\left( P_{i}\left( k\right) \right) -2\eta _{i}^{2}\left\| K_{i}\left( k\right) \right\| ^{2} \end{aligned}$$

and selecting \(\eta _{i}\), \(\gamma _{i}\), \(Q_{i}\) and \(R_{i}\), such that \(E_{i}>0\) and \(F_{i}>0\), \(\forall k\), then, (29) can be expressed as

$$\begin{aligned} \Delta {V_i}\left( k \right) \le- & {\left\| {{{\tilde{\omega }}_i}\left( k \right) } \right\| ^2}{E_i}\left( k \right) - {\left| {{e_i}\left( k \right) } \right| ^2}{F_i}\left( k \right) \\+ &\, 2{\gamma _i}\delta \varepsilon _{{z_i}}^2 \end{aligned}$$
(30)

Hence, \(\Delta V_{i}\left( k\right) <0\) when

$$\left\| \widetilde{w}_{i}\left( k\right) \right\| >\sqrt{\frac{2\gamma _{i}\epsilon _{z_{i}}^{2}}{E_{i}\left( k\right) }}\equiv \kappa _{1}$$
(31)

or

$$\left| e_{i}\left( k\right) \right| >\sqrt{\frac{2\gamma _{i}\epsilon _{z_{i}}^{2}}{F_{i}\left( k\right) }}\equiv \kappa _{2}$$
(32)

Step 2. Now for \({\mathbf {V}}\left( k\right)\), consider the Lyapunov function candidate.

$$\begin{aligned} {\mathbf {V}}\left( k\right)= & \, \sum \limits _{i=1}^{n}\widetilde{w} _{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) +\gamma _{i}e_{i}^{2}\left( k\right) \\ \Delta {\mathbf {V}}\left( k\right)= &\, \sum \limits _{i=1}^{n}\left( \widetilde{w }_{i}^{T}\left( k+1\right) P_{i}\left( k+1\right) \widetilde{w}_{i}\left( k+1\right) \right. \\&\left. +\,\gamma _{i}e_{i}^{2}\left( k+1\right) -\widetilde{w}_{i}^{T}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) \right. \\&\left. -\,\gamma _{i}e_{i}^{2}\left( k\right) \right) \end{aligned}$$
(33)

Using (10) and (14) in (23)

$$\begin{aligned} \Delta {\mathbf {V}}\left( k\right)= &\, \sum \limits _{i=1}^{n}\left( \left[ \widetilde{w}_{i}\left( k\right) -\eta _{i}K_{i}\left( k\right) e_{i}\left( k\right) \right] ^{T}\right. \\ \times &\,[P_{i}\left( k\right) -A_{i}\left( k\right) ]\left[ \widetilde{w}_{i}\left( k\right) -\eta _{i}K_{i}\left( k\right) e_{i}\left( k\right) \right] \\&+\,\gamma _{i}\left[ \widetilde{w}_{i}\left( k\right) z_{i}\left( x(k-l),u(k)\right) +\epsilon _{z_{i}}\right] ^{2} \\&\left. -\,\widetilde{w}_{i}\left( k\right) P_{i}\left( k\right) \widetilde{w}_{i}\left( k\right) -\gamma _{i}e_{i}^{2}\left( k\right) \right) \end{aligned}$$
(34)

Defining

$$\begin{aligned} A_{i}\left( k\right)= & \,K_{i}\left( k\right) H_{i}^{\top }\left( k\right) P_{i}\left( k\right) +Q_{i}\left( k\right) \\ E_{i}\left( k\right)= & \,\lambda _{\min }\left( A_{i}\left( k\right) \right) -\lambda _{\max }^{2}\left( A_{i}\left( k\right) \right) \\&-\,2\gamma _{i}\left\| z_{i}\left( x(k-l),u(k)\right) \right\| ^{2}+\lambda _{\max }\left( P_{i}\left( k\right) \right) \\ F_{i}\left( k\right)= & \,\gamma _{i}+\eta _{i}^{2}\left\| K_{i}\left( k\right) \right\| ^{2}\lambda _{\min }\left( A_{i}\left( k\right) \right) \\&-\,\eta _{i}^{2}\left\| K_{i}\left( k\right) \right\| ^{2}\lambda _{\max }^{2}\left( P_{i}\left( k\right) \right) -2\eta _{i}^{2}\left\| K_{i}\left( k\right) \right\| ^{2} \end{aligned}$$

and selecting \(\eta _{i}\), \(\gamma _{i}, Q_{i}\) and \(R_{i}\), such that \(E_{i}>0\) and \(F_{i}>0\), \(\forall k\), then, (24) can be expressed as

$$\begin{aligned} \Delta {\mathbf {V}}\left( k\right)\le & \sum \limits _{i=1}^{n}(-\left\| \widetilde{w}_{i}\left( k\right) \right\| ^{2}E_{i}\left( k\right) \\&- \,\left| e_{i}\left( k\right) \right| ^{2}\left( k\right) F_{i}\left( k\right) +2\gamma _{i}\epsilon _{z_{i}}^{2}) \end{aligned}$$

Hence, \(\Delta {\mathbf {V}}\left( k\right) <0\) when (31) or (32) is fulfilled

Therefore, considering Step 1 and Step 2 for (23), the solution of (10) and (14) is SGUUB. \(\square\)

Remark 1

Considering Theorem 1 and its proof, it can be easily shown that the result can be extended to a system (12) with multiple delays like \(x\left( k-l_{i}\right)\) with \(i=1,2,\ldots\), can be used instead of \(x\left( k-l\right)\) in (3) and/or for time-varying delays \(x\left( k-l_{i}\left( k\right) \right)\) with \(l_{i}\left( k\right)\) bounded by \(l_{i}\left( k\right) \le l\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanis, A.Y., Rios, J.D., Arana-Daniel, N. et al. Neural identifier for unknown discrete-time nonlinear delayed systems. Neural Comput & Applic 27, 2453–2464 (2016). https://doi.org/10.1007/s00521-015-2016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2016-7

Keywords

Navigation