Skip to main content
Log in

Nonlocal image denoising via adaptive tensor nuclear norm minimization

  • Recent advances in Pattern Recognition and Artificial Intelligence
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Nonlocal self-similarity shows great potential in image denoising. Therefore, the denoising performance can be attained by accurately exploiting the nonlocal prior. In this paper, we model nonlocal similar patches through the multi-linear approach and then propose two tensor-based methods for image denoising. Our methods are based on the study of low-rank tensor estimation (LRTE). By exploiting low-rank prior in the tensor presentation of similar patches, we devise two new adaptive tensor nuclear norms (i.e., ATNN-1 and ATNN-2) for the LRTE problem. Among them, ATNN-1 relaxes the general tensor N-rank in a weighting scheme, while ATNN-2 is defined based on a novel tensor singular-value decomposition (t-SVD). Both ATNN-1 and ATNN-2 construct the stronger spatial relationship between patches than the matrix nuclear norm. Regularized by ATNN-1 and ATNN-2 respectively, the derived two LRTE algorithms are implemented through the adaptive singular-value thresholding with global optimal guarantee. Then, we embed the two algorithms into a residual-based iterative framework to perform nonlocal image denoising. Experiments validate the rationality of our tensor low-rank assumption, and the denoising results demonstrate that our proposed two methods are exceeding the state-of-the-art methods, both visually and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Milanfar P (2013) A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal Process Mag 30(1):106–128

    Article  Google Scholar 

  2. Budak C, Tiirk M, Toprak A (2015) Reduction in impulse noise in digital images through a new adaptive artificial neural network model. Neural Comput Appl 26:835–843

    Article  Google Scholar 

  3. Chatterjee P, Milanfar P (2010) Is denoising dead? IEEE Trans Image Process 19(4):895–911

    Article  MathSciNet  MATH  Google Scholar 

  4. Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. CVPR 2:60–65

    MATH  Google Scholar 

  5. Shao L, Yan R, Li X, Liu Y (2014) From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans Cybern 44(7):1001–1013

    Article  Google Scholar 

  6. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  7. Mairal J, Bach F, Ponce J et al (2009) Non-local sparse models for image restoration. In: 2009 IEEE 12th international conference on computer vision, Kyoto, 29 September–2 October 2009, pp 2272–2279. doi:10.1109/ICCV.2009.5459452

  8. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang S, Zhang L, Liang Y (2012) Nonlocal spectral prior model for low-level vision. In: Lee KM, Matsushita Y, Rehg JM, Hu Z (eds) Computer vision – ACCV 2012,  vol 7726, pp 231–244

  10. Dong W, Shi G, Li X (2013) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 22(2):700–711

    Article  MathSciNet  MATH  Google Scholar 

  11. Andrews H, Patterson C (1976) Singular value decompositions and digital image processing. IEEE Trans Acoust Speech Signal Process 24(1):26–53

    Article  Google Scholar 

  12. Chang S, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MathSciNet  MATH  Google Scholar 

  13. Candes E, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai J, Candes E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen K, Dong H, Chan K (2013) Reduced rank regression via adaptive nuclear norm penalization. Biometrika 100(4):901–920

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), Columbus, 23–28 June 2014, pp 2862–2869. doi:10.1109/CVPR.2014.366

  17. Nguyen T, Park J, Kim S, Lee G (2011) Automatically improving image quality using tensor voting. Neural Comput Appl 20:1017–1026

    Article  Google Scholar 

  18. Zhang M, Ding C (2013) Robust tucker tensor decomposition for effective image representation. In: 2013 IEEE international conference on computer vision, Sydney, 1–8 December 2013, pp 2448–2455. doi:10.1109/ICCV.2013.304

  19. Rajwade A, Rangarajan A, Banerjee A (2013) Image denoising using the higher order singular value decomposition. IEEE Trans Pattern Anal Mach Intell 35(4):849–862

    Article  Google Scholar 

  20. Lathauwer L, Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  MATH  Google Scholar 

  22. Gandy S, Recht B, Yamada I (2011) Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl 27(2):025010

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen Y, Hsu C, Liao H (2014) Simultaneous tensor decomposition and completion using factor priors. IEEE Trans Pattern Anal Mach Intell 36(3):577–591

    Article  Google Scholar 

  24. Chen J, Saad Y (2009) On the tensor SVD and the optimal low rank orthogonal approximation of tensors. SIAM J Matrix Anal Appl 30(4):1709–1734

    Article  MathSciNet  MATH  Google Scholar 

  25. Acar E, Dunlavy D, Kolda T, Morup M (2011) Scalable tensor factorization for incomplete data. Chemometrics Intell Lab Syst 106(1):41–56

    Article  Google Scholar 

  26. Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220

    Article  Google Scholar 

  27. Tomioka R, Suzuki T (2013) Convex tensor decomposition via structured schatten norm regularization. In: Advances in neural information processing systems 26, pp 1331–1339

  28. Signoretto M, Dinh Q, Lathauwer L, Suykens J (2014) Learning with tensors: a framework based on convex optimization and spectral regularization. Mach Learn 94:303–351

    Article  MathSciNet  MATH  Google Scholar 

  29. Fazel M (2002) Matrix rank minimization with applications. Ph.D. dissertation, Stanford University

  30. Semerci O, Hao Ning, Kilmer M, Milller E (2014) Tensor-based factorization and nuclear norm regularization for multienergy computed tomography. IEEE Trans Image Process 23(4):1678–1693

    Article  MathSciNet  MATH  Google Scholar 

  31. Kilmer M, Braman K, Hao N, Hoover R (2013) Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J Matrix Anal Appl 34(1):148–172

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Z, Ely G, Aeron S et al (2014) Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp 3842–3849. doi:10.1109/CVPR.2014.485

  33. Georges F, Nadakuditi R (2012) The singular values and vectors of low rank perturbations of large rectangular random matrices. J Multivar Anal 111:120–135

    Article  MathSciNet  MATH  Google Scholar 

  34. Stewart G (1990) Perturbation theory for the singular value decomposition. Technical Report UMIACS-TR-90-124

  35. Golub G, Hoffman A, Stewart G (1987) A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl 88:317–327

    Article  MathSciNet  MATH  Google Scholar 

  36. Nadakuditi R (2014) OptShrink: an algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage. IEEE Trans Inf Theory 60(5):3002–3018

    Article  MathSciNet  MATH  Google Scholar 

  37. Boyd S, Parikh N, Chu E et al (2010) Distributed optimization and statistical learning via the alternating direction method and multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  38. Lin Z, Chen M, Ma Y (2009) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical report UILU-ENG-09-2215, UIUC (arXiv:1009.5055)

  39. Brand M (2006) Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl 415(1):20–30

    Article  MathSciNet  MATH  Google Scholar 

  40. Osher S, Burger M, Goldfarb D et al (2005) An iterative regularization method for total variation-based image restoration. Multiscale Model Simul 4(2):460–489

    Article  MathSciNet  MATH  Google Scholar 

  41. Charest M, Milanfar P (2008) On iterative regularization and its application. IEEE Trans Circuits Syst Video Technol 18(3):406–411

    Article  Google Scholar 

  42. Milanfar P (2014) Symmetrizing smoothing filters. SIAM J Imaging Sci 6(1):263–284

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  44. Donoho D, Johnstone I (1993) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  MATH  Google Scholar 

  45. Recht B (2011) A simpler approach to matrix completion. J Mach Learn Res 12:3413–3430

    MathSciNet  MATH  Google Scholar 

  46. Nie F, Huang H, Ding C (2012) Low-rank matrix recovery via efficient Schatten p-norm minimization. In: Proceedings of the twenty-sixth (AAAI) conference on artificial intelligence, Toronto, 22–26 July 2012, pp 655–661

  47. Hu Y, Zhang D, Ye J et al (2013) Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell 35(9):2117–2130

    Article  Google Scholar 

  48. Lu C, Tang J, Yan S, Lin Z (2014) Generalized nonconvex nonsmooth low-rank minimization. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), Columbus, 23–28 June 2014, pp 4130–4137. doi:10.1109/CVPR.2014.526

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Hu, W., Jin, T. et al. Nonlocal image denoising via adaptive tensor nuclear norm minimization. Neural Comput & Applic 29, 3–19 (2018). https://doi.org/10.1007/s00521-015-2050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2050-5

Keywords

Navigation