Abstract
This paper evaluates the ability of wavelet transform in improving the accuracy of artificial neural network (ANN) and adaptive neuro-fuzzy interface systems (ANFIS) models. In this study, the performance of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating daily evapotranspiration in arid regions was evaluated. Prior to the development of models, gamma test was used to identify the best input combinations that could be used under limited data scenario. Performance of the proposed hybrid models was compared to ANN, ANFIS, and conventionally used Hargreaves equation. The results revealed that use of wavelet transform as data preprocessing technique enhanced the efficiency of ANN and ANFIS models. Wavelet-ANN and Wavelet-ANFIS performed reasonably better than other models. Better handling of wavelet-decomposed input variables enabled Wavelet-ANN models to perform slightly better than the Wavelet-ANFIS models. W-ANN2 (RMSE = 0.632 mm/day and R = 0.96) was found to be the best model for estimating daily evapotranspiration in arid regions. The proposed W-ANN2 model used second-level db3 wavelet-decomposed subseries of temperature and previous day evapotranspiration values as inputs. The study concludes that hybrid Wavelet-ANN and Wavelet-ANFIS models can be effectively used for modeling evapotranspiration.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
López-Urrea R, de Santa Martín, Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manag 85:15–26. doi:10.1016/j.agwat.2006.03.014
Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. Food and Agricultural Organisation, Rome
Doorenbos J, Pruitt WO (1997) Crop water requirements. FAO irrigation and drainage. Paper No. 24 (rev.). FAO, Rome
Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49
Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92
Snyder RL (1992) Equation for evaporation pan to evapotranspiration conversions. J Irrig Drain Eng 118:977–980
Irmak S, Haman DZ, Jones JW (2002) Evaluation of class a pan coefficients for estimating reference evapotranspiration in humid location. J Irrig Drain Eng 128:153–159. doi:10.1061/(ASCE)0733-9437(2002)128:3(153)
Martí P, Royuela A, Manzano J, Palau-Salvador G (2010) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136:161–174. doi:10.1061/(ASCE)IR.1943-4774.0000152
Nandagiri L, Kovoor GM (2006) Performance evaluation of reference evapotranspiration equations across a range of Indian climates. J Irrig Drain Eng 132:238–249. doi:10.1061/(ASCE)0733-9437(2006)132:3(238)
Rojas JP, Sheffield RE (2013) Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in Northeast Louisiana. J Irrig Drain Eng 139:285–292. doi:10.1061/(ASCE)IR.1943-4774.0000523
Sahoo B, Walling I, Deka BC, Bhatt BP (2012) Standardization of reference evapotranspiration models for a subhumid valley rangeland in the Eastern Himalayas. J Irrig Drain Eng 138:880–895. doi:10.1061/(ASCE)IR.1943-4774.0000476
Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fakheri F, Marti P (2014) Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput Electron Agric 108:230–241. doi:10.1016/j.compag.2014.08.007
Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23:3057–3067. doi:10.1007/s11269-009-9423-4
Tabari H, Grismer ME, Trajkovic S (2011) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117. doi:10.1007/s00271-011-0295-z
Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. doi:10.1016/j.advwatres.2008.10.005
Tabari H, Martinez C, Ezani A, Hosseinzadeh Talaee P (2013) Applicability of support vector machines and adaptive neuro-fuzzy inference system for modeling potato crop evapotranspiration. Irrig Sci 31:575–588. doi:10.1007/s00271-012-0332-6
Tabari H, Hosseinzadeh Talaee P, Abghari H (2012) Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptron. Meteorol Atmos Phys 116:147–154. doi:10.1007/s00703-012-0184-x
Tabari H, Marofi S, Sabziparvar A-A (2010) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28:399–406. doi:10.1007/s00271-009-0201-0
Chauhan S, Shrivastava RK (2008) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23:825–837. doi:10.1007/s11269-008-9301-5
Kişi Ö (2009) Modeling monthly evaporation using two different neural computing techniques. Irrig Sci 27:417–430. doi:10.1007/s00271-009-0158-z
Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26:531–545. doi:10.1007/s00271-008-0114-3
Kumar M, Raghuwanshi NS, Singh R (2010) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25. doi:10.1007/s00271-010-0230-8
Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95:553–565. doi:10.1016/j.agwat.2007.12.011
Rahimi Khoob A (2007) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26:253–259. doi:10.1007/s00271-007-0090-z
Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129:214–218. doi:10.1061/(ASCE)0733-9437(2003)129:3(214)
Zanetti SS, Sousa EF, Oliveira VP, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133:83–89. doi:10.1061/(ASCE)0733-9437(2007)133:2(83)
Rahimikhoob A (2010) Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor Appl Climatol 101:83–91. doi:10.1007/s00704-009-0204-z
Tabari H, Hosseinzadeh Talaee P (2012) Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput Appl 23:341–348. doi:10.1007/s00521-012-0904-7
Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2013) Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J Hydrol 480:46–57. doi:10.1016/j.jhydrol.2012.12.006
Karimaldini F, Shui L (2012) Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique. J Irrig Drain Eng 138:21–34. doi:10.1061/(ASCE)IR.1943-4774.0000343
Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol 398:292–302. doi:10.1016/j.jhydrol.2010.12.030
Tabari H, Kisi O, Ezani A, Hosseinzadeh Talaee P (2012) SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J Hydrol 444–445:78–89. doi:10.1016/j.jhydrol.2012.04.007
Deka PC, Prahlada R (2012) Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time. Ocean Eng 43:32–42. doi:10.1016/j.oceaneng.2012.01.017
Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36:961–1005
Liu B, Shao D, Shen X (2007) Reference crop evaportranspiration forecasting model for BP neural networks based on wavelet transform. J Eng J Wuhan Univ 40:69–73
Izadifar Z (2010) Modeling and analysis of actual evapotranspiration using data driven and wavelet techniques. Thesis. Department of civil and geological engineering, University of Saskatchewan
Falamarzi Y, Palizdan N, Huang YF, Lee TS (2014) Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agric Water Manag 140:26–36. doi:10.1016/j.agwat.2014.03.014
Wang WG, Luo YF (2008) Wavelet network model for reference crop evapotranspiration forecasting. In: Proceedings of 2007 international conference on wavelet analysis pattern recognition, ICWAPR’07. pp 751–755
Stefánsson A, Končar N, Jones AJ (1997) A note on the Gamma Test. Neural Comput Appl 5:131–133
Tsui APM, Jones AJ, de Oliveira AG (2002) The construction of smooth models using irregular embeddings determined by a gamma test analysis. Neural Comput Appl 10:318–329. doi:10.1007/s005210200004
Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst Appl 41:5267–5276. doi:10.1016/j.eswa.2014.02.047
Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693. doi:10.1109/34.192463
Jang J-SRJ (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. doi:10.1109/21.256541
Tabari H, Hosseinzadeh Talaee P, Willems P, Martinez C (2014) Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations. Hydrol Sci J. doi:10.1080/02626667.2014.947293
Meza F, Varas E (2000) Estimation of mean monthly solar global radiation as a function of temperature. Agric For Meteorol 100:231–241. doi:10.1016/S0168-1923(99)00090-8
Boger Z, and Guterman H (1997) Knowledge extraction from artificial neural network model. In: IEEE systems, man, and cybernetics conference, Orlando, FL, USA
Berry M, Linoff G (1997) Data mining techniques. Wiley, Hoboken
Blum A (1992) Neural networks in C++. Wiley, Hoboken
Acknowledgments
The authors wish to thank the India Meteorological Department for providing the required data for this research. Also, the authors wish to thank the reviewers for their comments, which have significantly improved the original manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Patil, A.P., Deka, P.C. Performance evaluation of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating evapotranspiration in arid regions of India. Neural Comput & Applic 28, 275–285 (2017). https://doi.org/10.1007/s00521-015-2055-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-015-2055-0