Abstract
This paper presents a novel binary monarch butterfly optimization (BMBO) method, intended for addressing the 0–1 knapsack problem (0–1 KP). Two tuples, consisting of real-valued vectors and binary vectors, are used to represent the monarch butterfly individuals in BMBO. Real-valued vectors constitute the search space, whereas binary vectors form the solution space. In other words, monarch butterfly optimization works directly on real-valued vectors, while solutions are represented by binary vectors. Three kinds of individual allocation schemes are tested in order to achieve better performance. Toward revising the infeasible solutions and optimizing the feasible ones, a novel repair operator, based on greedy strategy, is employed. Comprehensive numerical experimentations on three types of 0–1 KP instances are carried out. The comparative study of the BMBO with four state-of-the-art classical algorithms clearly points toward the superiority of the former in terms of search accuracy, convergent capability and stability in solving the 0–1 KP, especially for the high-dimensional instances.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Du DZ, Ko KI, Hu X (2011) Design and analysis of approximation algorithms. Springer, Berlin
Mavrotas G, Diakoulaki D, Kourentzis A (2008) Selection among ranked projects under segmentation, policy and logical constraints. Eur J Oper Res 187(1):177–192. doi:10.1016/j.ejor.2007.03.010
Vanderster DC, Dimopoulos NJ, Parra-Hernandez R et al (2009) Resource allocation on computational grids using a utility model and the knapsack problem. Future Gener Comput Syst 25(1):35–50. doi:10.1016/j.future.2008.07.006
PeetaS Salman FS, Gunnec D et al (2010) Pre-disaster investment decisions for strengthening a highway network. Comput Oper Res 37(10):1708–1719. doi:10.1016/j.cor.2009.12.006
Yates J, Lakshmanan K (2011) A constrained binary knapsack approximation for shortest path network interdiction. Comput Ind Eng 61(4):981–992. doi:10.1016/j.cie.2011.06.011
Dantzig GB (1957) Discrete-variable extremum problems. Oper Res 5(2):266–288
Shih W (1979) A branch and bound method for the multi-constraint zero-one knapsack problem. J Oper Res Soc. doi:10.2307/3009639
Toth P (1980) Dynamic programing algorithms for the zero-one knapsack problem. Computing 25(1):29–45. doi:10.1007/BF02243880
Plateau G, Elkihel M (1985) A hybrid method for the 0–1 knapsack problem. Methods Oper Res 49:277–293
Thiel J, Voss S (1994) Some experiences on solving multi constraint zero-one knapsack problems with genetic algorithms. INFOR 32(4):226–242
Chen P, Li J, Liu ZM (2008) Solving 0–1 knapsack problems by a discrete binary version of differential evolution. In: Second international symposium on intelligent information technology application, vol 2, pp 513–516. doi:10.1109/IITA.2008.538
Bhattacharjee KK, Sarmah SP (2014) Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl Soft Comput 19:252–263. doi:10.1016/j.asoc.2014.02.010
Feng YH, Jia K, and He YC (2014) An improved hybrid encoding cuckoo search algorithm for 0–1 knapsack problems. Comput Intell Neurosci 2014:970456. doi:10.1155/2014/970456
Feng YH, Wang GG, Feng QJ, Zhao XJ (2014) An effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0–1 knapsack problems. Comput Intell Neurosci. doi:10.1155/2014/857254
Kashan MH, Nahavandi N, Kashan AH (2012) DisABC: a new artificial bee colony algorithm for binary optimization. Appl Soft Comput 12(1):342–352. doi:10.1016/j.asoc.2011.08.038
Zou D, Gao L, Li S, Wu J (2011) Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput 11(2):1556–1564. doi:10.1016/j.asoc.2010.07.019
Kong X, Gao L, Ouyang H, Li S (2015) A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Syst Appl 42(12):5337–5355. doi:10.1016/j.eswa.2015.02.015
Zhou Y, Li L, Ma M (2015) A complex-valued encoding bat algorithm for solving 0–1 knapsack problem. Neural Process Lett. doi:10.1007/s11063-015-9465-y
Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
Yang XS, Deb S, Fong S (2014) Bat algorithm is better than intermittent search strategy. J Multi-Valued Log Soft Comput 22(3):223–237
Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. doi:10.1109/TEVC.2008.919004
Li X, Wang J, Zhou J, Yin M (2011) A perturb biogeography based optimization with mutation for global numerical optimization. Appl Math Comput 218(2):598–609. doi:10.1016/j.amc.2011.05.110
Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289. doi:10.1007/s00707-009-0270-4
Srivastava PR, Chis M, Deb S et al (2012) An efficient optimization algorithm for structural software testing. Int J Artif Intell™ 8(S12):68–77
Wang G-G, Guo LH, Duan H et al (2012) A hybrid meta-heuristic DE/CS algorithm for UCAV path planning. J Inform Comput Sci 9(16):4811–4818
Wang G-G, Gandomi AH, Zhao XJ et al (2014) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput. doi:10.1007/s00500-014-1502-7
Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877. doi:10.1007/s00521-013-1433-8
Wang G-G, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871. doi:10.1007/s00521-012-1304-8
Wang GG, Gandomi AH, Yang XS, et al (2012) A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int J Bio-Inspired Comput
Wang G-G, Gandomi AH, Alavi AH et al (2015) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput Appl. doi:10.1007/s00521-015-1914-z
Wang G-G, Guo LH, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34
Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370
Fong S, Deb S, Yang XS (2015) A heuristic optimization method inspired by wolf preying behavior. Neural Comput Appl. doi:10.1007/s00521-015-1836-9
Cui Z, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio-Inspired Comput 5(2):133–139. doi:10.1504/IJBIC.2013.053507
Wang L, Yang R, Ni H et al (2015) A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Appl Soft Comput 34:736–743. doi:10.1016/j.asoc.2015.06.004
Fong S, Yang XS, Deb S (2013) Swarm search for feature selection in classification. In: Computational science and engineering (CSE), 2013 IEEE 16th international conference on. IEEE, pp 902–909
Wang G-G, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired Comput in press
Mirjalili SA, Hashim SZM (2011). BMOA: binary magnetic optimization algorithm. In: 2011 3rd international conference on machine learning and computing (ICMLC 2011), Singapore, pp 201–206
Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl. doi:10.1007/s00521-015-1923-y
Wang G-G, Zhao XC, Deb S (2015). A novel monarch butterfly optimization with greedy strategy and self-adaptive crossover operator. In: the 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong. IEEE
He Y, Zhang X, Li W et al (2014) Algorithms for randomized time-varying knapsack problems. J Comb Optim. doi:10.1007/s10878-014-9717-1
Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome
Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In: Evolutionary computation, 1994. IEEE World Congress on computational intelligence. Proceedings of the first IEEE conference on. IEEE, pp 579–584. doi:10.1109/ICEC.1994.349995
Olsen AL (1994) Penalty functions and the knapsack problem. In: Evolutionary computation, 1994. IEEE World congress on computational intelligence. Proceedings of the first IEEE conference on. IEEE, pp 554–558. doi:10.1109/ICEC.1994.350000
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston
Simon D (2013) Evolutionary optimization algorithms. Wiley, New York
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. doi:10.1007/s10898-007-9149-x
Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE, pp 210–214. doi:10.1109/NABIC.2009.5393690
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. doi:10.1023/A:1008202821328
Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin
Yang XS, Deb S, Hanne T, He XS (2015) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl. doi:10.1007/s00521-015-1925-9
Montgomery DC (2005) Design and analysis of experiments. Wiley, Arizona
Feng YH, Wang G-G (2015) An Improved hybrid encoding firefly algorithm for randomized time-varying knapsack problems. In: The 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong. IEEE
Wang G-G, Hossein Gandomi A, Yang XS et al (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220
Acknowledgments
This work was supported by National Natural Science Foundation of China (Nos. 61272297, 61402207, 61503165), Jiangsu Province Science Foundation for Youths (No. BK20150239) and R&D Program for Science and Technology of Shijiazhuang (No. 155790215).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feng, Y., Wang, GG., Deb, S. et al. Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput & Applic 28, 1619–1634 (2017). https://doi.org/10.1007/s00521-015-2135-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-015-2135-1