Skip to main content
Log in

Estimation of critical dimensions for a trapezoidal-shaped steel fin using hybrid differential evolution algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the inverse prediction of parameters in a trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient. Three critical dimensions along with the relevant heat transfer coefficient at the fin base have been simultaneously predicted for satisfying a given temperature distribution on the surface of the trapezoidal fin. The inverse problem is solved by a hybrid differential evolution-nonlinear programming (DE-NLP) optimization method. For a given fin material which is considered to be stainless steel, it is found from the present study that many feasible dimensions exist which satisfy a given temperature distribution, thereby providing flexibility in selecting any dimensions from the available alternatives by appropriately regulating the base heat transfer coefficient. A very good estimation of the unknown parameters has been obtained even for temperature distribution involving random measurement errors which is confirmed by the comparisons of the reconstructed distributions. It is concluded that for a given fin material, the hybrid DE-NLP algorithm satisfactorily estimates feasible dimensions of a trapezoidal fin even with random measurement error of 11 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a 1 , b 1 , c 1 , d 1 , e 1 :

Vectors in DE algorithm

b :

Semi-thickness at the base (m)

e r :

Non-dimensional measurement error

e r(dim.) :

Dimensional measurement error (K)

F :

Objective function

f :

Scaling factor

Gr:

Grashof number

g :

Acceleration due to gravity (m/s2)

h :

Local heat transfer coefficient W/(m2·K)

h b :

Base heat transfer coefficient W/(m2·K)

j :

Set containing the constraints

k :

Thermal conductivity W/(m·K)

k a :

Thermal conductivity at ambient condition W/(m·K)

L :

Length of the fin (m)

M :

Number of temperature measurement points

N :

Non-dimensional fin parameter

Nu :

Nusselt number at any location

Nu b :

Nusselt number at the base of the fin

n :

Exponent for variable heat transfer coefficient

p :

Number of constraints

Pr:

Prandtl number

Ra:

Rayleigh number

T :

Temperature (K)

T b :

Base temperature (K)

T a :

Ambient temperature (K)

W :

Width of the fin (m)

x :

Any location along fin length (m)

Y :

Mutant vector in DE algorithm

Z :

Parent vector in DE algorithm

z :

Child vector in DE algorithm

α f :

Thermal diffusivity of fluid medium (m2/s)

β :

Variable conductivity coefficient (K−1)

χ :

Crossover probability in DE algorithm

δ :

Semi fin offset (m)

ɛ 1 :

Non-dimensional thermal conductivity parameter

ɛ 2 :

Taper ratio

ɛ 3 :

Non-dimensional heat transfer coefficient parameter

λ :

Set containing the unknowns

ν f :

Kinematic viscosity of fluid (m2/s)

θ :

Non-dimensional temperature = \({\raise0.7ex\hbox{${\left( {T - T_{a} } \right)}$} \!\mathord{\left/ {\vphantom {{\left( {T - T_{a} } \right)} {\left( {T_{b} - T_{a} } \right)}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\left( {T_{b} - T_{a} } \right)}$}}\)

\(\tilde{\theta }\) :

Exact value of non-dimensional temperature

ψ :

Lagrange multiplier in NLP algorithm

ψ f :

Volume expansion coefficient (K−1)

References

  1. Groetsch CW (1999) Inverse problems: activities for undergraduates. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Pehlivanoglu YV (2014) Direct and indirect design prediction in genetic algorithm for inverse design problems. Appl Soft Comput 24:781–793

    Article  Google Scholar 

  3. Das R (2015) Identification of materials in a hyperbolic annular fin for a given temperature requirement. Inverse Probl Sci Eng. doi:10.1080/17415977.2015.1017486

    Google Scholar 

  4. Das R, Ooi KT (2013) Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement. Energy Convers Manage 66:211–219

    Article  Google Scholar 

  5. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202

    Article  MathSciNet  MATH  Google Scholar 

  6. Fogel DB, Robinson CJ (2003) Computational intelligence: the experts speak. Wiley, New Jersey

    Book  Google Scholar 

  7. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  8. Wong KP, Dong ZY (2005) Differential evolution, an alternative approach to evolutionary algorithm. In: IEEE proceedings of the 13th international conference on intelligent systems application to power systems, Arlington, VA, USA, pp 73–83

  9. Donate JP, Li X, Sánchez GG, de Miguel AS (2013) Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput Appl 22:11–20

    Article  Google Scholar 

  10. Das R, Prasad DK (2015) Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evolut Comput 23:27–29

    Article  Google Scholar 

  11. Bahrammirzaee A (2010) A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput Appl 19:1165–1195

    Article  Google Scholar 

  12. Hajmohammadi MR, Poozesh S, Nourazar SS (2012) Constructal design of multiple heat sources in a square-shaped fin. Proc Inst Mech Eng E J Process Mech Eng 226:324–336

    Article  Google Scholar 

  13. Hajmohammadi MR, Poozesh S, Nourazar SS, Manesh AH (2013) Optimal architecture of heat generating pieces in a fin. J Mech Sci Tech 27:1143–1149

    Article  Google Scholar 

  14. Chen Z, Li Q, Meier D, Warnecke HJ (1997) Convective heat transfer and pressure loss in rectangular ducts with drop-shaped pin fins. Heat Mass Transf 33:219–224

    Article  Google Scholar 

  15. Chen HT, Hsu WL (2007) Estimation of heat transfer coefficient on the fin of annular finned-tube heat exchangers in natural convection for various fin spacings. Int J Heat Mass Transf 50:1750–1761

    Article  MATH  Google Scholar 

  16. Das R (2012) Application of genetic algorithm for unknown parameter estimations in cylindrical fin. Appl Soft Comput 12:3369–3378

    Article  Google Scholar 

  17. Hajabdollahi F, Rafsanjani HH, Hajabdollahi Z, Hamidi Y (2012) Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm. Appl Math Model 36:244–254

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhowmik A, Singla RK, Roy PK, Prasad DK, Das R, Repaka R (2013) Predicting geometry of rectangular and hyperbolic fin profiles with temperature-dependent thermal properties using decomposition and evolutionary methods. Energy Convers Manage 74:535–547

    Article  Google Scholar 

  19. Panda S, Bhowmik A, Das R, Repaka R, Martha S (2012) Application of homotopy analysis method and inverse solution of a rectangular wet fin. Energy Convers Manage 80:305–318

    Article  Google Scholar 

  20. Singla RK, Das R (2014) Application of decomposition method and inverse prediction of parameters in a moving fin. Energy Convers Manage 84:268–281

    Article  Google Scholar 

  21. Bamdad K, Ashorynejad HR (2015) Inverse analysis of a rectangular fin using the lattice Boltzmann method. Energy Convers Manage 97:290–297

    Article  Google Scholar 

  22. Birgin EG, Chambouleyron I, Martınez JM (1999) Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J Comput Phys 151:862–880

    Article  MATH  Google Scholar 

  23. Herskovits J, Dubeux V, Mota Soares CM, Araújo AL (2004) Interior point algorithms for nonlinear constrained least squares problems. Inverse Probl Sci Eng 12:211–223

    Article  Google Scholar 

  24. Ko TH, Ting K (2006) Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube. Energy 31:2142–2152

    Article  Google Scholar 

  25. Hajmohammadi MR, Lorenzini G, Shariatzadeh OJ, Biserni C (2015) Evolution in the design of V-Shaped highly conductive pathways embedded in a heat-generating piece. J Heat Transf 137:061001

    Article  Google Scholar 

  26. Hajmohammadi MR, Moulod M, Shariatzadeh OJ, Nourazar SS (2014) Essential reformulations for optimization of highly conductive inserts embedded into a rectangular chip exposed to a uniform heat flux. Proc Inst Mech Eng Part C J Mech Eng Sci 228:2337–2346

    Article  Google Scholar 

  27. Hajmohammadi MR, Maleki H, Lorenzini G, Nourazar SS (2015) Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces. Adv Powder Technol 26:193–199

    Article  Google Scholar 

  28. Hajmohammadi MR, Pouzesh A, Poozesh S (2012) Controlling the heat flux distribution by changing the thickness of heated wall. J Basic Appl Sci 2:7270–7275

    Google Scholar 

  29. Hajmohammadi MR, Nourazar SS, Campo A, Poozesh S (2013) Optimal discrete distribution of heat flux elements for in-tube laminar forced convection. Int J Heat Fluid Flow 40:89–96

    Article  Google Scholar 

  30. Najafi H, Najafi B, Hoseinpoori P (2011) Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Appl Therm Eng 31:1839–1847

    Article  Google Scholar 

  31. Khani F, Aziz A (2010) Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient. Commun Nonlinear Sci Numer Simul 15:590–601

    Article  Google Scholar 

  32. Cengel YA, Ghajar AJ (2007) Heat and mass transfer: fundamentals & applications, 4th edn. Tata McGraw Hill Education, New Delhi

    Google Scholar 

  33. Tillner-Roth R, Harms-Watzenberg F, Baehr HD (1993) Eine neue Fundamentalgleichung für Ammoniak. DKV TAGUNGSBERICHT 20:167–181

    Google Scholar 

  34. Younglove BA, Ely JF (1987) Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane. J Phys Chem Ref Data 16:577–798

    Article  Google Scholar 

  35. Kierzenka J, Shampine LF (2008) A BVP solver that controls residual and error. J Numer Anal Ind Appl Math 3:27–41

    MathSciNet  MATH  Google Scholar 

  36. Coleman TF, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445

    Article  MathSciNet  MATH  Google Scholar 

  37. Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9:877–900

    Article  MathSciNet  MATH  Google Scholar 

  38. Byrd RH, Gilbert JC, Nocedal J (2010) A trust region method based on interior point techniques for nonlinear programming. Math Program 89:149–185

    Article  MathSciNet  MATH  Google Scholar 

  39. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Hiedelberg

    MATH  Google Scholar 

  40. Thermal conductivity of some common materials and gases. www.engineeringtoolbox.com/thermal-conductivity-d_429.html. Accessed 28 May 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Singh, K. & Gogoi, T.K. Estimation of critical dimensions for a trapezoidal-shaped steel fin using hybrid differential evolution algorithm. Neural Comput & Applic 28, 1683–1693 (2017). https://doi.org/10.1007/s00521-015-2155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2155-x

Keywords

Navigation