Skip to main content
Log in

Prediction and optimization of unsteady forced convection around a rounded cornered square cylinder in the range of Re

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An unsteady two-dimensional laminar forced convection heat transfer around a square cylinder with the rounded corner edge is numerically investigated for Re = 80–180 and non-dimensional corner radius, r = 0.50–0.71 at Pr = 0.71 (Air). A structured non-uniform mesh is used for the computational domain discretization, and the finite-volume-method-based commercial code FLUENT is used for numerical simulation. The heat transfer characteristics over the rounded corner square cylinder are analyzed with average Nusselt number (Nu avg) at various Re and various corner radii. The heat transfer characteristic is predicted by gene expression programming (GEP), and the GEP-generated explicit equation of Nu avg is utilized in particle swarm optimization to optimize the corner radii for maximum heat transfer rate. The data required for the training the GEP model have been collected from the authors’ recent published article (Neural Comput Appl, 2015. doi:10.1007/s00521-015-2023-8). It is found that the heat transfer rate of a circular cylinder can be enhanced 12 % by introducing a new cylinder geometry of corner radius r = 0.51.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B :

Blockage ratio (D/H)

Cp:

Specific heat of the fluid (J/kg k)

D :

Width of the square cylinder (m)

h :

Local convective heat transfer coefficient (W/m2k)

H :

Height of the domain (m)

k :

Thermal conductivity of the fluid (W/mk)

L d :

Downstream face distance of the inlet from the cylinder center (m)

L u :

Upstream face distance of the inlet from the cylinder center (m)

Re :

Reynolds number (=\(\frac{{\rho U_{\infty } D}}{\mu }\)) (dimensionless)

t :

Time (dimensionless)

U :

Free stream velocity (m/s)

x, y :

Cartesian coordinates

p :

Free stream pressure

R :

Radius of the corner (m)

r :

Radius of the corner (dimensionless, R/D)

u, v :

Velocity components in x and y directions (m/s)

µ :

Viscosity of the fluid (Pa s)

ρ :

Density (kg/m3)

θ :

Dimensionless temperature (=\(\frac{{\bar{T} - T_{\infty } }}{{T_{w} - T_{\infty } }}\))

∞:

Free stream

w :

Cylinder surface

−:

Dimensional variable

References

  1. Dey P, Sarkar A, Das AK (2015) Development of GEP and ANN model to predict the unsteady forced convection over a cylinder. Neural Comput Appl. doi:10.1007/s00521-015-2023-8

    Google Scholar 

  2. Bhattacharyya S, Mahapatra S (2005) Vortex shedding around a heated square cylinder under the influence of buoyancy. Heat Mass Transf 41(9):824–833

    Article  Google Scholar 

  3. Dhiman A, Chhabra R, Eswaran V (2005) Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number. Int J Heat Mass Transf 48(21):4598–4614

    Article  MATH  Google Scholar 

  4. Dhiman A et al (2006) Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numer Heat Transf Part A Appl 49(7):717–731

    Article  Google Scholar 

  5. Ji TH, Kim SY, Hyun JM (2008) Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. Int J Heat Mass Transf 51(5):1130–1138

    Article  Google Scholar 

  6. Rahnama M, Hadi-Moghaddam H (2005) Numerical investigation of convective heat transfer in unsteady laminar flow over a square cylinder in a channel. Heat Transf Eng 26(10):21–29

    Article  Google Scholar 

  7. Sahu AK, Chhabra R, Eswaran V (2009) Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. Int J Heat Mass Transf 52(3):839–850

    Article  MATH  Google Scholar 

  8. Sharma A, Eswaran V (2004) Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numer Heat Transf Part A Appl 45(3):247–269

    Article  Google Scholar 

  9. Sharma A, Eswaran V (2004) Effect of aiding and opposing buoyancy on the heat and fluid flow across a square cylinder at Re = 100. Numer Heat Transf Part A Appl 45(6):601–624

    Article  Google Scholar 

  10. Sheard GJ, Fitzgerald MJ, Ryan K (2009) Cylinders with square cross-section: wake instabilities with incidence angle variation. J Fluid Mech 630:43–69

    Article  MATH  Google Scholar 

  11. Dey P, Das A (2015) Steady flow over triangular extended solid attached with square cylinder—a method to reduce drag. Ain Shams Eng J 6(3):929–938

    Article  Google Scholar 

  12. Dey P, Das A (2015) Numerical analysis of drag and lift reduction of square cylinder. Eng Sci Technol Int J 18(4):758–768

    Article  Google Scholar 

  13. Chakraborty J, Verma N, Chhabra R (2004) Wall effects in flow past a circular cylinder in a plane channel: a numerical study. Chem Eng Process 43(12):1529–1537

    Article  Google Scholar 

  14. Chhabra R, Soares A, Ferreira J (2004) Steady non–Newtonian flow past a circular cylinder: a numerical study. Acta Mech 172(1–2):1–16

    Article  MATH  Google Scholar 

  15. Golani R, Dhiman AK (2014) Fluid flow and heat transfer across a circular cylinder in the unsteady flow regime. Int J Eng Sci 3(3):8–19

    Google Scholar 

  16. Mahír N, Altaç Z (2008) Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int J Heat Fluid Flow 29(5):1309–1318

    Article  Google Scholar 

  17. Park J, Kwon K, Choi H (1998) Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int J 12(6):1200–1205

    Article  Google Scholar 

  18. Posdziech O, Grundmann R (2007) A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J Fluids Struct 23(3):479–499

    Article  Google Scholar 

  19. Shi J-M et al (2004) Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Phys Fluids (1994-present) 16(12):4331–4345

    Article  MATH  Google Scholar 

  20. Tritton DJ (1959) Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 6(04):547–567

    Article  MATH  Google Scholar 

  21. Hu J, Zhou Y, Dalton C (2006) Effects of the corner radius on the near wake of a square prism. Exp Fluids 40(1):106–118

    Article  Google Scholar 

  22. Tamura T, Miyagi T (1999) The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. J Wind Eng Ind Aerodyn 83(1):135–145

    Article  Google Scholar 

  23. Carassale L, Freda A, Marrè-Brunenghi M (2014) Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners. J Fluids Struct 44:195–204

    Article  Google Scholar 

  24. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13:87–129

    MathSciNet  MATH  Google Scholar 

  25. Dey P, Sarkar A, Das AK (2015) Prediction of unsteady mixed convection over circular cylinder in the presence of nanofluid—a comparative study of ANN and GEP. J Nav Archit Mar Eng 12(1):57–71

    Article  Google Scholar 

  26. Martí P et al (2013) Artificial neural networks vs. Gene Expression Programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Comput Electron Agric 99:176–185

    Article  Google Scholar 

  27. Dikmen E (2015) Gene expression programming strategy for estimation performance of LiBr–H2O absorption cooling system. Neural Comput Appl 26:409–415

    Article  Google Scholar 

  28. Nazari A (2012) Application of gene expression programming to predict the compressive damage of lightweight aluminosilicate geopolymer. Neural Comput Appl 1–10. doi:10.1007/s00521-012-1137-5

    Google Scholar 

  29. Nazari A, Riahi S (2013) Predicting the effects of nanoparticles on compressive strength of ash-based geopolymers by gene expression programming. Neural Comput Appl 23(6):1677–1685

    Article  Google Scholar 

  30. Rao R, Patel V (2010) Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int J Therm Sci 49(9):1712–1721

    Article  Google Scholar 

  31. Azarkish H, Farahat S, Sarvari SMH (2012) Comparing the performance of the particle swarm optimization and the genetic algorithm on the geometry design of longitudinal fin. eps 5(1):262–265

    Google Scholar 

  32. Fluent I (2006) FLUENT 6.3 user’s guide. Fluent documentation

  33. Ferreira C (2002) Gene expression programming in problem solving. In: Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F (eds) Soft computing and industry. Springer, New York, p 635–653

    Chapter  Google Scholar 

  34. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE 4:1942–1948

    Google Scholar 

Download references

Acknowledgments

The authors are fully grateful to the three anonymous esteemed reviewers for their valuable comments which lead the manuscript to substantial improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, P., Das, A.K. Prediction and optimization of unsteady forced convection around a rounded cornered square cylinder in the range of Re . Neural Comput & Applic 28, 1503–1513 (2017). https://doi.org/10.1007/s00521-015-2168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2168-5

Keywords

Navigation