Skip to main content
Log in

Extreme learning machine with fuzzy input and fuzzy output for fuzzy regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

It is practically and theoretically significant to approximate and simulate a system with fuzzy inputs and fuzzy outputs. This paper proposes a extreme learning machine (ELM)-based fuzzy regression model (\({{\rm FR}}_{{{\rm ELM}}}\)) in which both inputs and outputs are triangular fuzzy numbers. Algorithm for training \({{\rm FR}}_{{{\rm ELM}}}\) is designed, and its computational complexity is analyzed. Furthermore, the convergence and error estimation for \({{\rm FR}}_{{{\rm ELM}}}\) are discussed. Numerical simulations show that the proposed \({{\rm FR}}_{{{\rm ELM}}}\) can effectively approximate a fuzzy input and fuzzy output system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arabpour AR, Tata M (2008) Estimating the parameters of a fuzzy linear regression model. Iran J Fuzzy Syst 5(2):1–19

    MathSciNet  MATH  Google Scholar 

  2. Berenji HR (1992) Fuzzy logic controllers. An introduction to fuzzy logic applications in intelligent systems. Springer, New York

    Google Scholar 

  3. Choi SH, Buckley JJ (2008) Fuzzy regression using least absolute deviation estimators. Soft Comput 12(3):257–263

    Article  Google Scholar 

  4. Diamond P (1988) Fuzzy least squares. Inf Sci 46(3):141–157

    Article  MathSciNet  MATH  Google Scholar 

  5. Diamond P, Körner R (1997) Extended fuzzy linear models and least squares estimates. Comput Math Appl 33(9):15–32

    Article  MathSciNet  MATH  Google Scholar 

  6. D’Urso P (2003) Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Comput Stat Data Anal 42(1):47–72

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu AM, Dong CR, Wang LS (2014) An experimental study on stability and generalization of extreme learning machines. Int J Mach Learn Cybern. doi:10.1007/s13042-014-0238-0

  8. Fu AM, Wang XZ, He YL, Wang LS (2014) A study on residence error of training an extreme learning machine and its application to evolutionary algorithms. Neurocomputing. doi:10.1016/j.neucom.2014.04.067

  9. Gani AN (2012) A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Appl Math Sci 6(11):525–532

    MathSciNet  MATH  Google Scholar 

  10. Hassanpour H, Maleki HR, Yaghoobi MA (2009) A goal programming approach to fuzzy linear regression with non-fuzzy input and fuzzy output data. Asia–Pac J Oper Res 26(5):587–604

    MathSciNet  MATH  Google Scholar 

  11. Hasanpour H, Maleki HR, Yaghoubi MA (2010) Fuzzy linear regression model with crisp coefficients: a goal programming approach. Iran J Fuzzy Syst 7(2):19–39

    MathSciNet  Google Scholar 

  12. Hojati M, Bector CR, Smimou K (2005) A simple method for computation of fuzzy linear regression. Eur J Oper Res 166(1):172–184

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong DH, Lee S, Do HY (2001) Fuzzy linear regression analysis for fuzzy input–output data using shape-preserving operations. Fuzzy Sets Syst 122(3):513–526

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  15. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  16. Huang L, Zhang BL, Huang Q (1998) Robust interval regression analysis using neural networks. Fuzzy Sets Syst 97(3):337–347

    Article  Google Scholar 

  17. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  18. Ishibuchi H, Tanaka H (1992) Fuzzy regression analysis using neural networks. Fuzzy Sets Syst 50(3):257–265

    Article  MathSciNet  Google Scholar 

  19. Kao C, Chyu CL (2002) A fuzzy linear regression model with better explanatory power. Fuzzy Sets Syst 126(3):401–409

    Article  MathSciNet  MATH  Google Scholar 

  20. Kao C, Chyu CL (2003) Least-squares estimates in fuzzy regression analysis. Eur J Oper Res 148(2):426–435

    Article  MathSciNet  MATH  Google Scholar 

  21. Kwang HL (2005) First course on fuzzy theory and applications. Adv Soft Comput 27:129–151

    Article  Google Scholar 

  22. Pedrycz W (1990) Fuzzy sets in pattern recognition: methodology and methods. Pattern Recognit 23(1):121–146

    Article  Google Scholar 

  23. Rabiei MR, Arghami NR, Taheri SM, Sadeghpour B (2013) Fuzzy regression model with interval-valued fuzzy input-output data. In: Proceedings of 2013 IEEE international conference on fuzzy systems, pp 1–7

  24. Redden DT, Woodall WH (1994) Properties of certain fuzzy linear regression methods. Fuzzy Sets Syst 64:361–375

    Article  MathSciNet  MATH  Google Scholar 

  25. Sakawa M, Yano H (1992) Fuzzy linear regression analysis for fuzzy input-output data. Inf Sci 63(3):191–206

    Article  MathSciNet  MATH  Google Scholar 

  26. Sakawa M, Yano H (1992) Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst 47(2):173–181

    Article  MATH  Google Scholar 

  27. Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern 12(6):903–907

    Article  MATH  Google Scholar 

  28. Wang XZ, Shao QY, Miao Q, Zhai JH (2013) Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 102:3–9

    Article  Google Scholar 

  29. Wu HC (2003) Linear regression analysis for fuzzy input and output data using the extension principle. Comput Math Appl 45(12):1849–1859

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang MS, Ko CH (1996) On a class of fuzzy \(c\)-numbers clustering procedures for fuzzy data. Fuzzy Sets Syst 84(1):49–60

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang MS, Lin TS (2002) Fuzzy least-squares linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst 126(3):389–399

    Article  MathSciNet  MATH  Google Scholar 

  32. Yen KK, Ghoshray S, Roig G (1999) A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets Syst 106(2):167–177

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang AW (2012) Contrast between fuzzy linear least-squares regression based on different distances. J Jiangsu Univ Sci Technol 26(5):509–513

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-lin He.

Additional information

We thank three anonymous reviewers whose valuable comments and suggestions help us significantly improve this paper. This work is supported by China Postdoctoral Science Foundation (2015M572361), National Natural Science Foundations of China (61503252), and Hebei Province Science and Technology Support Program Project (13210351).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Ht., Wang, J., He, Yl. et al. Extreme learning machine with fuzzy input and fuzzy output for fuzzy regression. Neural Comput & Applic 28, 3465–3476 (2017). https://doi.org/10.1007/s00521-016-2232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2232-9

Keywords

Navigation