Skip to main content
Log in

Object tracking via Dirichlet process-based appearance models

  • Computational Intelligence for Vision and Robotics
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Object tracking is the process of locating objects of interest in video frames. Challenges still exist in handling appearance changes in object tracking for robotic vision. In this paper, we propose a novel Dirichlet process-based appearance model (DPAM) for tracking. By explicitly introducing a new model variable into the traditional Dirichlet process, we model the negative and positive target instances as the combination of multiple appearance models. Within each model, target instances are dynamically clustered based on their visual similarity. DPAM provides an infinite nonparametric mixture of distributions that can grow automatically with the complexity of the appearance data. In addition, prior off-line training or specifying the number of mixture components (clusters or parameters) is not required. We build a tracking system in which DPAM is applied to cluster negative and positive target samples and detect the new target location. Our experimental results on real-world videos show that our system achieves superior performance when compared with several state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Isard M, MacCormick J (2001) Bramble: a bayesian multiple-blob tracker. In: IEEE international conference on computer vision, pp 34–41

  2. Birchfield S (1998) Elliptical head tracking using intensity gradients and color histograms. In: IEEE international conference on computer vision and pattern recognition, pp 232–237

  3. Lepetit V, Fua P (2006) Keypoint recognition using randomized trees. IEEE Trans Pattern Anal Mach Intell 28:1465–1479

    Article  Google Scholar 

  4. Branson K, Belongie S (2005) Tracking multiple mouse contours (without too many samples). In: IEEE international conference on computer vision and pattern recognition, pp 1039–1046

  5. Yu G, Hu Z, Lu H, Li W (2011) Robust object tracking with occlusion handle. Neural Comput Appl 20:1027–1034

    Article  Google Scholar 

  6. Wang N, Wang J, Yeung D-Y (2013) Online robust non-negative dictionary learning for visual tracking. In: IEEE international conference on computer vision, pp 657–664

  7. Chen D, Yuan Z, Wu Y, Zhang G, Zheng N (2013) Constructing adaptive complex cells for robust visual tracking. In: IEEE international conference on computer vision, pp 1113–1120

  8. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision, pp 234–247

  9. Wang X, Hua G, Han T (2010) Discriminative tracking by metric learning. In: European conference on computer vision, pp 200–214

  10. Li A, Tang F, Guo Y, Tao H (2010) Discriminative nonorthogonal binary subspace tracking. In: European conference on computer vision, pp 258–271

  11. Lefort R, Fablet R, Boucher J (2010) Weakly supervised classification of objects in images using soft random forests. In: European conference on computer vision, pp 185–198

  12. Liu R, Cheng J, Lu H (2009) A robust boosting tracker with minimum error bound in a co-training framework. In: IEEE international conference on computer vision, pp 1459–1466

  13. Santner J, Leistner C, Saffari A, Pock T, Bischof H (2010) Prost: parallel robust online simple tracking. In: IEEE international conference on computer vision and pattern recognition, pp 723–730

  14. Lu H, Zhou Q, Wang D, Xiang R (2011) A co-training framework for visual tracking with multiple instance learning. In: IEEE international conference on automatic face & gesture recognition and workshops, pp 539–544

  15. Dinh T, Medioni G (2011) Co-training framework of generative and discriminative trackers with partial occlusion handling. In: IEEE workshop on applications of computer vision, pp 642–649

  16. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26:1064–1072

    Article  Google Scholar 

  17. Lepetit V, Lagger P, Fua P (2005) Randomized trees for real-time keypoint recognition. In: IEEE international conference on computer vision and pattern recognition, pp 775–781

  18. Lim J, Ross D, Lin R, Yang M (2004) Incremental learning for visual tracking. In: Advances in neural information processing systems, pp 793–800

  19. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29:261–271

    Article  Google Scholar 

  20. Grabner H, Bischof H (2006) On-line boosting and vision. In: IEEE international conference on computer vision and pattern recognition, pp 260–267

  21. Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. In: IEEE international conference on computer vision and pattern recognition, pp 49–56

  22. Babenko B, Yang M, Belongie S (2009) Visual tracking with online multiple instance learning. In: IEEE conference on computer vision and pattern recognition, pp 983–990

  23. Williams O, Blake A, Cipolla R (2005) Sparse bayesian learning for efficient visual tracking. IEEE Trans Pattern Anal Mach Intell 27:1292–1304

    Article  Google Scholar 

  24. Aeschliman C, Park J, Kak A (2010) A probabilistic framework for joint segmentation and tracking. In: IEEE international conference on computer vision and pattern recognition, pp 1371–1378

  25. Collins R, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27:1631–1643

    Article  Google Scholar 

  26. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25:564–577

    Article  Google Scholar 

  27. Mei X, Ling H (2009) Robust visual tracking using l 1 minimization. In: IEEE international conference on computer vision, pp 1436–1443

  28. Hager G, Belhumeur P (1998) Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intell 20:1025–1039

    Article  Google Scholar 

  29. Black M, Jepson A (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26:63–84

    Article  Google Scholar 

  30. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: IEEE international conference on computer vision and pattern recognition, pp 142–149

  31. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE international conference on computer vision and pattern recognition, pp 798–805

  32. Jepson A, Fleet D, El-Maraghi T (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25:1296–1311

    Article  Google Scholar 

  33. Matthews L, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 6:810–815

    Article  Google Scholar 

  34. Ross D, Lim J, Lin R, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77:125–141

    Article  Google Scholar 

  35. Zhou H, Yuan Y, Shi C (2009) Object tracking using sift features and mean shift. Comput Vis Image Underst 113:345–352

    Article  Google Scholar 

  36. Godec M, Roth P, Bischof H (2013) Hough-based tracking of non-rigid objects. Comput Vis Image Underst 117:1245–1256

    Article  Google Scholar 

  37. He S, Yang Q, Lau R, Wang J, Yang M (2013) Visual tracking via locality sensitive histograms. In: IEEE international conference on computer vision and pattern recognition, pp 2427–2434

  38. Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: IEEE international conference on computer vision and pattern recognition, pp 1910–1917

  39. Yu T, Dinh TB, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers. In: European conference on computer vision, pp 678–691

  40. Kwon J, Lee KM (2010) Visual tracking decomposition. In: IEEE international conference on computer vision and pattern recognition, pp 1269–1276

  41. Kim T, Woodley T, Stenger B, Cipolla R (2010) Online multiple classifier boosting for object tracking. In: IEEE international conference on computer vision and pattern recognition, pp 1–6

  42. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: European conference on computer vision, pp 624–637

  43. Han Z, Ye Q, Jiao J (2011) Combined feature evaluation for adaptive visual object tracking. Comput Vis Image Underst 115:69–80

    Article  Google Scholar 

  44. Cherian A, Morellas V, Papanikolopoulos N, Bedros S (2011) Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications. In: IEEE international conference on computer vision and pattern recognition, pp 3417–3424

  45. Ferguson T (1973) A bayesian analysis of some nonparametric problems. Ann Stat 1:209–230

    Article  MathSciNet  MATH  Google Scholar 

  46. Aldous D (1985) Exchangeability and related topics. École d’Été de Probabilités de Saint-Flour, pp 1–198

  47. Ramisa A, Vasudevan S, Aldavert D, Toledo R, de Mantaras RL (2009) Evaluation of the sift object recognition method in mobile robots. In: International conference of the catalan association for artificial intelligence, pp 56–73

  48. Yu S-I, Yang Y, Hauptmann A (2013) Harry potter’s marauder’s map: localizing and tracking multiple persons-of-interest by nonnegative discretization. In: IEEE conference on computer vision and pattern recognition, pp 3714–3720

  49. Lee D-Y, Sim J-Y, Kim C-S (2014) Visual tracking using pertinent patch selection and masking. In: IEEE conference on computer vision and pattern recognition, pp 3486–3493

  50. Jain YK, Yadav R (2014) Content-based image retrieval approach using three features color, texture and shape. Int J Comput Appl 97(17):1–8

    Google Scholar 

  51. Nummiaro K, Koller-Meier E, Van Gool L (2003) Color features for tracking non-rigid objects. ACTA Autom Sin 29(3):345–355

    Google Scholar 

  52. Wang J, Yagi Y (2006) Integrating shape and color features for adaptive real-time object tracking. In: IEEE international conference on robotics and biomimetics, pp 1–6

  53. Ogul B, Temizel A (2013) Person re-identification by combining features in a learning based framework. In: International conference on imaging for crime detection and prevention, pp 1–5

  54. http://www.cvg.rdg.ac.uk/pets2006/data.html

  55. http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html

  56. http://www.openvisor.org

  57. http://vision.ucsd.edu/bbabenko/projectmiltrack.shtml

  58. Plungpongpun K, Naik D (2008) Multivariate analysis of variance using a kotz type distribution. Proc World Congr Eng 2:2–4

    Google Scholar 

  59. Fang K, Kotz S, Ng K (1998) Symmetric multivariate and related distributions. Chapman & Hall, London

    MATH  Google Scholar 

  60. Gómez E, Gomez-Viilegas M, Marin J (1998) A multivariate generalization of the power exponential family of distributions. Commun Stat Theory Methods 27(3):589–600

    Article  MathSciNet  MATH  Google Scholar 

  61. Johnson ME (2013) Multivariate statistical simulation: a guide to selecting and generating continuous multivariate distributions. Wiley, Hoboken

    Google Scholar 

  62. Naik DN, Plungpongpun K (2006) A kotz-type distribution for multivariate statistical inference. In: Advances in distribution theory, order statistics, and inference, pp 111–124

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almomani, R., Dong, M. & Zhu, D. Object tracking via Dirichlet process-based appearance models. Neural Comput & Applic 28, 867–879 (2017). https://doi.org/10.1007/s00521-016-2280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2280-1

Keywords

Navigation