Skip to main content
Log in

Heat and mass transfer analysis for MHD flow of nanofluid inconvergent/divergent channels with stretchable walls using Buongiorno’s model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present article investigates the flow, heat, and mass transfer in the convergent and divergent channels under the influence of magnetic field. The walls of the channel are also considered to be stretching/shrinking. Buongiorno’s model is used to formulate the problem for nanofluids. The equations governing the flow are transformed to a set of nonlinear ordinary differential equations by employing appropriate similarity transformations. Solution of the equations is obtained with the help of a useful and efficient numerical technique called the Runge–Kutta–Fehlberg method. Influence of the various emerging parameters on velocity, temperature and concentration profiles is described pictorially. Comprehensive discussions on the results obtained are provided. Backflow phenomena are observed for the stretching of divergent channel when angle opening and Re are increasing. This backflow can be controlled in two ways: one is by applying a strong magnetic field and other by shrinking the walls of the divergent channels. These results can be useful in various practical situations. Furthermore, expressions for skin friction coefficient, Nusselt and Sherwood numbers are obtained, and the variations in these quantities are analyzed graphically. Comparison of the results obtained here with the ones already existed in the literature confirms our solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49

Similar content being viewed by others

References

  1. Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Philos Mag 6:455–465

    Article  MATH  Google Scholar 

  2. Hamel G (1916) Spiralförmige Bewgungen Zäher Flüssigkeiten. Jahresber Dtsch Math Ver 25:34–60

    MATH  Google Scholar 

  3. Esmaeilpour M, Ganji DD (2010) Solution of the Jeffery–Hamel flow problem by optimal homotopy asymptotic method. Comput Math Appl 59:3405–3411

    Article  MathSciNet  MATH  Google Scholar 

  4. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21(4):645–647

    Article  Google Scholar 

  5. Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26(6):1389–1397

    Article  Google Scholar 

  6. Nadeem S, Haq RU (2013) Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40

    Article  Google Scholar 

  7. Khan U, Ahmed N, Mohyud-Din ST, Mohsin BB (2016) Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. doi:10.1007/s00521-016-2187-x

    Google Scholar 

  8. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds), Developments and applications of non-Newtonian flows, ASME FED, vol 231/MD-vol 66, pp 99–105

  9. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  10. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  11. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  Google Scholar 

  12. Maxwell JC (1904) Electricity and magnetism, 3rd edn. Clarendon, Oxford

    Google Scholar 

  13. Xue Q (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B 368:302–307

    Article  Google Scholar 

  14. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  15. Khan U, Ahmed N, Sikander W, Mohyud-Din ST (2015) A study of Velocity and temperature slip effects on flow of water based nanofluids in converging and diverging channels. Int J Appl Comput Math 1(4):569–587

    Article  MathSciNet  Google Scholar 

  16. Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. doi:10.1007/s00521-015-2035-4

    Google Scholar 

  17. Noor NFM, AwangKechil S, Hashim I (2010) Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet. Commun Nonlinear Sci Numer Simul 15(2):144–148

    Article  MATH  Google Scholar 

  18. Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5(3):294–306

    Article  Google Scholar 

  19. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  20. Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734

    Article  Google Scholar 

  21. Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method. J Z Fur Naturfr A 70(2):115–124

    Google Scholar 

  22. Akbar NS, Raza M, Ellahi R (2015) Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater 381:405–415

    Article  Google Scholar 

  23. Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  Google Scholar 

  24. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on nanofluid flow and heat transfer using two phase model. J Magn Magn Mater 374:36–43

    Article  Google Scholar 

  25. Rashidi S, Dehghan M, Ellahi R, Riaz M, Jamal-Abad MT (2015) Study of stream wise transverse magnetic fluid flow with heat transfer around a porous obstacle. J Magn Magn Mater 378:128–137

    Article  Google Scholar 

  26. Sheikholislami M, Ellahi R, Hassan M, Solemani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24(8):1906–1927

    Article  Google Scholar 

  27. Ellahi R, Aziz A, Zeeshan A (2013) Non Newtonian nanofluids flow through a porous medium between two coaxial cylinders with heat transfer and variable viscosity. J Porous Media 16(3):205–216

    Article  Google Scholar 

  28. Yusufoglu E, Bekir A (2007) The variational iteration method for solitary patterns solutions of gBBM equation. Phys Lett A 367:461–464

    Article  MathSciNet  MATH  Google Scholar 

  29. Bekir A, Ünsal O (2012) Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method. Phys Scr 85(6):65003–65008(6)

    Article  MATH  Google Scholar 

  30. Malvandia A, Ganji DD (2016) Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in micro channels. Particuology 24:113–122

    Article  Google Scholar 

  31. Malvandia A, Ganji DD (2015) Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels. Eur J Mech B Fluids 52:169–184

    Article  Google Scholar 

  32. Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522

    Article  Google Scholar 

  33. Noor NFM, Haq RU, Nadeem S, Hashim I (2015) Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8):2007–2022

    Article  MathSciNet  Google Scholar 

  34. Turkyilmazoglu M (2014) Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput Fluids 100:196–203

    Article  MathSciNet  Google Scholar 

  35. Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl Sci 5:1639–1664

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tauseef Mohyud-Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyud-Din, S.T., Khan, U., Ahmed, N. et al. Heat and mass transfer analysis for MHD flow of nanofluid inconvergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput & Applic 28, 4079–4092 (2017). https://doi.org/10.1007/s00521-016-2289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2289-5

Keywords

Navigation