Skip to main content
Log in

Velocity and temperature slip effects on squeezing flow of nanofluid between parallel disks in the presence of mixed convection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Velocity and temperature slip effects on squeezing flow of nanofluid between parallel disks in the presence of mixed convection is considered. Equations that govern the flow are transformed into a set of differential equations with the help of transformations. For the purpose of solution, homotopy analysis method is used. The BVPh2.0 package is utilized for the said purpose. Deviations in the velocity, temperature and the concentration profiles are depicted graphically. Mathematical expressions for skin friction coefficient, Nusselt and the Sherwood numbers are derived and the variations in these numbers are portrayed graphically. From the results obtained, we observed that the coefficient of skin friction increases with increase in Hartmann number M for the suction flow (A > 0), while in the blowing flow (A < 0) a fall is seen with increasing M. However, for rising values of velocity parameter β the effect of skin friction coefficient is opposite to that accounted for M. Variations in thermophoresis parameter N T and thermal slip parameter γ give rise in Nusselt number for both the suction and injection at wall. For both the suction and injection at wall, Sherwood number gets a rise with growing values of Brownian motion parameter N B, while a drop is seen in Sherwood number for increasing values of thermophoresis parameter N T. For the sake of comparison, the same problem is also solved by employing a numerical scheme called Runge–Kutta–Fehlberg (RKF) method. Results thus obtained are compared with existing ones and are found to be in agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

A :

Suction/injection parameter

B 0 :

Strength of the magnetic field (kg s−2 A−1)

\({\mathord{\buildrel{\hbox{$\smash{\scriptscriptstyle\smile}$ } } \!\!\!\over C}}_{w}\) :

Nanoparticle concentration at lower disk

\({\mathord{\buildrel{\hbox{$\smash{\scriptscriptstyle\smile}$ } } \!\!\!\over C}}_{h}\) :

Nanoparticle concentration at upper disk

C p :

Specific heat at constant pressure

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

M :

Magnetic field parameter

C fr :

Skin friction coefficient

Nu :

Local Nusselt number

Pr :

Prandtl number

Sh :

Local Sherwood number

S :

Squeeze number

\({\mathord{\buildrel{\hbox{$\smash{\scriptscriptstyle\smile}$ } } \!\!\!\over T}}\) :

Temperature variable K

\({\mathord{\buildrel{\hbox{$\smash{\scriptscriptstyle\smile}$ } } \!\!\!\over T}}_{w}\) :

Constant temperature at lower disk

\({\mathord{\buildrel{\hbox{$\smash{\scriptscriptstyle\smile}$ } } \!\!\!\over T}}_{h}\) :

Constant temperature at upper disk

\({\mathord{\buildrel{\hbox{$\smash{\scriptscriptstyle\smile}$ } } \!\!\!\over C}}\) :

Concentration variable

\(\hat{u},\hat{w}\) :

Radial and axial velocities (m s−1)

β :

Velocity slip parameter

γ :

Thermal slip parameter

ζ :

Similarity variable

f :

Dimensionless velocity

θ :

Dimensionless temperature

ν :

Kinematic viscosity

τ :

Ratio between effective heat capacity of the nanoparticle and the fluid

ϕ :

Dimensionless nanoparticle concentration

Le :

Lewis number

N B :

Brownian motion parameter

Nt:

Thermophoresis parameter

W :

Condition on the sheet

References

  1. Stefan MJ (1874) Versuch Über die scheinbare adhesion, “Sitzungsberichte der Akademie der Wissenschaften in Wien”. Mathematik-Naturwissen 69:713–721

    Google Scholar 

  2. Kuzma DC (1968) Fluid inertia effects in squeeze films. Appl Sci Res 18:15–20

    Article  Google Scholar 

  3. Hamza EA (1988) The magnetohydrodynamic squeeze film. J Tribol 110:375–377

    Article  Google Scholar 

  4. Domairry G, Aziz A (2009) Approximate analysis of MHD Squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Math Prob Eng 2009:603916

    Article  MATH  Google Scholar 

  5. Hayat T, Yousuf A, Mustafa M, Obaidat S (2012) MHD squeezing flow of second grade fluid between two parallel disks. Int J Numer Methods Fluids 69:399–410

    Article  MathSciNet  MATH  Google Scholar 

  6. Qayyum A, Awais M, Alsaedi A, Hayat T (2012) Unsteady squeezing flow of Jeffery Fluid between two parallel disks. Chin Phys Lett 29:034701

    Article  Google Scholar 

  7. Mustafa M, Hayat T, Obaidat S (2012) On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica 47:1581–1589

    Article  MathSciNet  MATH  Google Scholar 

  8. MunawarS Mehmood A, Ali A (2012) Three dimensional squeezing flow in a rotating channel of lower stretching porous wall. Comput Math Appl 64:1575–1586

    Article  MathSciNet  MATH  Google Scholar 

  9. Khaled ARA, Vafai K (2004) Hydromagnetic squeezed flow and heat transfer over a sensor surface. Int J Eng Sci 42:509–519

    Article  MATH  Google Scholar 

  10. Mahmood M, Asghar S, Hossain MA (2007) Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat Mass Transf 44:165–173

    Article  Google Scholar 

  11. Mori Y (1961) Buoyancy effects in forced laminar convection flow over a horizontal plate. J Heat Transf 83:479–482

    Article  Google Scholar 

  12. Sparrow EM, Minkowycz WJ (1962) Buoyancy effects of horizontal boundary layer flow and heat transfer. Int J Heat Transf 5:505–511

    Article  Google Scholar 

  13. Imtiaz M, Hayat T, Hussain M, Shehzad SA, Chen GQ, Ahmad B (2014) Mixed convection flow of nanofluid with Newtonian heating. Eur Phys J Plus 129:97

    Article  Google Scholar 

  14. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows, vol 231. ASME, New York, pp 99–105

    Google Scholar 

  15. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  16. Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306

    Article  Google Scholar 

  17. Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  18. Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734

    Article  Google Scholar 

  19. Kandelousi MS, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method. J Zeitschrift Fur Naturforschung A 70(2):115–124

    Google Scholar 

  20. Akber NS, Raza M, Ellahi R (2015) Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater 381:405–415

    Article  Google Scholar 

  21. Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  Google Scholar 

  22. Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522

    Article  Google Scholar 

  23. Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. doi:10.1007/s00521-015-2035-4

    Google Scholar 

  24. Ahmed N, Mohyud-Din ST, Hassan SM (2016) Flow and heat transfer of nanofluid in an asymmetric channel with expanding and contracting walls suspended by carbon nanotubes: a numerical investigation. Aerosp Sci Technol 48:53–60

    Article  Google Scholar 

  25. Navier CLM (1823) Mémoire sur les lois du mouvement des fluids. Mém Acad R Sci Inst France 6:389–440

    Google Scholar 

  26. Hussain A, Mohyud-Din ST, Cheema TA (2012) Analytical and numerical approaches to squeezing flow and heat transfer between two parallel disks with velocity slip and temperature jump. China Phys Lett 29:114705-1–114705-5

    Google Scholar 

  27. Shikhmurzaev YD (1993) The moving contact line on a smooth solid surface. Int J Multiph Flow 19:589–610

    Article  MATH  Google Scholar 

  28. Martin MJ, Boyd ID (2006) Momentum and heat transfer in a laminar boundary layer with slip flow. J Thermophys Heat Transf 20(4):710–719

    Article  Google Scholar 

  29. Matthews MT, Hill JM (2007) Nano boundary layer equation with nonlinear Navier boundary condition. J Math Anal Appl 333:381–400

    Article  MathSciNet  MATH  Google Scholar 

  30. Ariel PD (2007) Axisymmetric flow due to a stretching sheet with partial slip. Comput Math Appl 54:1169–1183

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang CY (2009) Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal Real World Appl 10(1):375–380

    Article  MathSciNet  MATH  Google Scholar 

  32. Das K (2012) Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Comput Fluids 64(1):34–42

    Article  MathSciNet  MATH  Google Scholar 

  33. Ciancia A (2007) Analysis of time series with wavelets. Int J Wavelets Multiresolut Inf Process 5(2):241–256

    Article  MathSciNet  Google Scholar 

  34. Ciancio V, Cinacio A, Farsaci F (2008) On general properties of phenomenological and state coefficients for isotropic viscoanelastic media. Phys B 403:3221–3227

    Article  Google Scholar 

  35. Ciancio A, Quartarone A (2013) A hybrid model for tumor-immune competition. UPB Sci Bull Ser A 75(4):125–136

    MathSciNet  MATH  Google Scholar 

  36. Heydari MH, Hooshmandasi MR, Maalek Ghaini FM, Cattani C (2015) Wavelets method for the time fractional diffusion-wave equation. Phys Lett A 379(3):71–76

    Article  MathSciNet  MATH  Google Scholar 

  37. Alam MN, Hafez MG, Akbar MA, Roshid HO (2015) Exact traveling wave solutions to the (3 + 1)-dimensional mKdV–ZK and the (2 + 1)-dimensional Burgers equations via exp(−Φ(η))-expansion method. Alex Eng J 54(3):635–644

    Article  Google Scholar 

  38. Rahman MM, Roshid HO, Mozid Pk MA, Mamun MAA (2011) A comparative study of wavelet transform and Fourier transform. J Phys Sci 15:149–160

    MathSciNet  Google Scholar 

  39. Roshid HO, Akbar MA, Alam MN, Hoque MF, Rahman N (2014) New extended (G′/G)—expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation. SpringerPlus 3:122

    Article  Google Scholar 

  40. Liao S (ed) (2013) Advances in the homotopy analysis method. World Scientific Press, London (chapter 7)

    Google Scholar 

  41. Khan U, Ahmed N, Mohyud-Din ST (2016) Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem Eng Sci 141:17–27

    Article  Google Scholar 

  42. Mohyud-Din ST, Khan SIU (2016) Nonlinear radiation effects on squeezing flow of a Casson fluid between parallel disks. Aerosp Sci Technol 48:186–192

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to the unknown referees for their valuable comments which really improved the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tauseef Mohyud-Din.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that there is no conflict of interest regarding the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyud-Din, S.T., Khan, S.I. & Bin-Mohsin, B. Velocity and temperature slip effects on squeezing flow of nanofluid between parallel disks in the presence of mixed convection. Neural Comput & Applic 28 (Suppl 1), 169–182 (2017). https://doi.org/10.1007/s00521-016-2329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2329-1

Keywords

Navigation