Skip to main content
Log in

Sparse sample self-representation for subspace clustering

  • Recent advances in Pattern Recognition and Artificial Intelligence
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new subspace clustering method based on sparse sample self-representation (SSR). The proposed method considers SSR to solve the problem that affinity matrix does not strictly follow the structure of subspace, and also utilizes sparse constraint to ensure the robustness to noise and outliers in subspace clustering. Specifically, we propose to first construct a self-representation matrix for all samples and combine an l 1-norm regularizer with an l 2,1-norm regularizer to guarantee that each sample can be represented as a sparse linear combination of its related samples. Then, we conduct the resulting matrix to build an affinity matrix. Finally, we apply spectral clustering on the affinity matrix to conduct clustering. In order to validate the effectiveness of the proposed method, we conducted experiments on UCI datasets, and the experimental results showed that our proposed method reduced the minimal clustering error, outperforming the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elhamifar E, Vidal R (2009) Sparse subspace clustering. TPAMI 35(11):2790–2797

    Google Scholar 

  2. Tron R, Vidal R (2007) A benchmark for the comparison of 3-d motion segmentation algorithm. In: CVPR, pp 1–8

  3. Zhu X, Zhang S, Jin Z, Zhang Z, Xu Z (2011) Missing value estimation for mixed-attribute datasets. IEEE Trans Knowl Data Eng TKDE 23(1):110–121

    Article  Google Scholar 

  4. Yang A, Wright J, Ma Y et al (2008) Unsupervised segmentation of natural images via lossy data compression. CVIU 110(2):212–225

    Google Scholar 

  5. Zhu X, Suk HI, Lee SW, Shen D (2015) Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification. IEEE Trans Biomed Eng 63(3):607–618

    Article  Google Scholar 

  6. Feng J, Zhou L, Xu H, Yan S (2014) Robust subspace segmentation with block-diagonal prior. In: CVPR, pp 3818–3825

  7. Liu G, Lin Z, Yan S, Sun J et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Softw Eng 35(1):171–184

    Google Scholar 

  8. Chen G, Lerman G (2009) Spectral curvature clustering. In: IJCV, vol. 81. pp 317–330

  9. Chen G, Lerman G (2009) Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found Comput Math 9(5):517–559

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu CY, Min H, Zhao Z, Zhu L et al (2012) Robust and efficient subspace segmentation via least squares regression. In: ECCV, pp 347–360

  11. Zhang S, Qin Z, Ling C, Sheng S (2005) ‘Missing is useful’: missing values in cost-sensitive decision trees. IEEE Trans Knowl Data Eng TKDE 17(12):1689–1693

    Article  Google Scholar 

  12. Nie F, Huang H, Cai X, Ding C (2010) Efficient and robust feature selection via joint l 2,1-norms minimization. In: NIPS, pp 1813–1821

  13. Costeira J, Kanade T (1998) A multibody factorization method for independently moving objects. IJCV 29(3):108–121

    Article  Google Scholar 

  14. Zhu X, Li X, Zhang S, Ju C, Wu X (2016) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 1–13. doi:10.1109/TNNLS.2016.2521602

  15. Nasihatkon B, Hartley R (2011) Graph connectivity in sparse subspace clustering. In: Proc. CVPR, pp 2137–2144

  16. Rao S, Tron R, Ma Y, Vidal R (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: IEEE conference on computer vision and pattern recognition, pp 1–8

  17. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  18. Ng A, Jordan M, Weiss Y (2002) On spectral clustering analysis and an algorithm. NIPS 14:849–856

    Google Scholar 

  19. Zhu X, Huang Z, Shen HT, Zhao X (2013) Linear cross-modal hashing for effective multimedia search. In: Proceedings of ACM MM, pp 143–152

  20. Zhu X, Suk HI, Wang L, Lee SW, Shen D (2015) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Hum Immunol 75(6):570–577

    Google Scholar 

  21. Shi J, Malik J (2000) Normalized cuts and image segmentation. TPAMI 22(8):888–905

    Article  Google Scholar 

  22. Zhu X, Huang Z, Shen H, Cheng J et al (2012) Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn 45(8):3003–3016

    Article  MATH  Google Scholar 

  23. Zhang S (2012) Decision tree classifiers sensitive to heterogeneous costs. J Syst Softw 85(4):771–779

    Article  Google Scholar 

  24. Marial J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. TIP 17(1):53–69

    MathSciNet  Google Scholar 

  25. Wang T, Qin Z, Zhang S, Zhang C (2012) Cost-sensitive classification with inadequate labeled data. Inf Syst 37(5):508–516

    Article  Google Scholar 

  26. Zhu X, Suk HI, Shen D (2014) A novel matrix-similarity based loss function for joint regression and classification in ad diagnosis. NeuroImage 100:91–105

    Article  Google Scholar 

  27. Candes EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 15(3):353–367

    MathSciNet  Google Scholar 

  29. Wu X, Zhang C, Zhang S (2005) Database classification for multi-database mining. Inf Syst 30:71–88

    Article  MATH  Google Scholar 

  30. Zhang S, Zaki MJ (2006) Mining multiple data sources: local pattern analysis. Data Min Knowl Discov 12(2–3):121–125

    Article  MathSciNet  Google Scholar 

  31. Tang Z, Zhang X, Li X, Zhang S (2016) Robust image hashing with ring partition and invariant vector distance. IEEE Trans Inf Forensics Secur 11(1):200–214

    Article  Google Scholar 

  32. Liu H, Ma Z, Zhang S, Zhang S (2015) Penalized partial least square discriminant analysis with l1 for multi-label data. Pattern Recogn 48(5):1724–1733

    Article  Google Scholar 

  33. Zhang S (2012) Nearest neighbor selection for iteratively kNN imputation. J Syst Softw 85(11):2541–2552

    Article  Google Scholar 

  34. Fischler MA, Bolles RC (1987) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):726–740

    MathSciNet  Google Scholar 

  35. Lang C, Liu G, Yu J, Yan S (2012) Saliency detection by multi-task sparsity pursuit. IEEE Trans Image Process 21(3):1327–1338

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen B, Liu G, Huang Z, Yan S (2011) Multi-task low-rank affinities pursuit for image segmentation. In: CVPR, pp 2439–2446

  37. Zhu X, Huang Z, Cui J, Shen HT (2013) Video-to-shot tag propagation by graph sparse group lasso. IEEE Trans Multimed 15(3):633–646

    Article  Google Scholar 

  38. Zhu X, Huang Z, Yang Y, Shen HT, Xu C, Luo J (2013) Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn 46(1):215–229

    Article  MATH  Google Scholar 

  39. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461

    Article  Google Scholar 

  40. Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. CVPR 24(4):1615–1622

    Google Scholar 

  42. Zhang S, Zhang C, Yan X (2003) Post-mining: maintenance of association rules by weighting. Inf Syst 28(7):691–707

    Article  Google Scholar 

  43. Zhu X, Huang Z, Cheng H, Cui J et al (2013) Sparse hashing for fast multimedia search. ACM Trans Inf Syst 31(2):9

    Article  Google Scholar 

  44. Candes EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):1–73

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the China 973 Program under Grant 2013CB329404, in part by the National Natural Science Foundation of China under Grant Nos. 61450001, 61263035 and 61573270, in part by the Guangxi Natural Science Foundation under Grant Nos. 2012GXNSFGA060004 and 2015GXNSFCB139011, in part by the China Postdoctoral Science Foundation under Grant 2015M57570837, in part by the Guangxi Higher Institutions’ Program of Introducing 100 High-Level Overseas Talents, in part by the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing and in part by the Guangxi Bagui Scholar Teams for Innovation and Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Zhang, S., Yang, L. et al. Sparse sample self-representation for subspace clustering. Neural Comput & Applic 29, 43–49 (2018). https://doi.org/10.1007/s00521-016-2352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2352-2

Keywords

Navigation