Skip to main content
Log in

Ideology algorithm: a socio-inspired optimization methodology

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a new socio-inspired metaheuristic technique referred to as ideology algorithm (IA). It is inspired by the self-interested and competitive behaviour of political party individuals which makes them improve their ranking. IA demonstrated superior performance as compared to other well-known techniques in solving unconstrained test problems. Wilcoxon signed-rank test is applied to verify the performance of IA in solving optimization problems. The results are compared with seven well-known and some recently proposed optimization algorithms (PSO, CLPSO, CMAES, ABC, JDE, SADE and BSA). A total of 75 unconstrained benchmark problems are used to test the performance of IA up to 30 dimensions. The results from this study highlighted that the IA outperforms the other algorithms in terms of number function evaluations and computational time. The eminent observed features of the algorithm are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. De Carvalho MG, Laender AHF, Goncalves MA et al (2012) A genetic programming approach to record deduplication. IEEE Trans Knowl Data Eng 24:399–412

    Article  Google Scholar 

  2. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13:398–417

    Article  Google Scholar 

  3. Tasgetiren MF, Suganthan PN, Pan QK (2010) An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem. Appl Math Comput 215:3356–3368

    MathSciNet  MATH  Google Scholar 

  4. Kennedy J, Eberhart R (1995) Particle swarm optimization in neural networks. Neural Networks, 1995. In: Proceedings IEEE international conference 4, 1942–1948

  5. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  6. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4):28–39

    Article  Google Scholar 

  7. Rahimi S, Roodposhti MS, Abbaspour RA (2014) Using combined AHP—genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environ Earth Sci 72(6):1979–1992

    Article  Google Scholar 

  8. Jordehi AR (2015) Chaotic bat swarm optimisation (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  9. Abbaspour RA, Samadzadegan F (2011) Time-dependent personal tour planning and scheduling in metropolises. Expert Syst Appl 38(10):12439–12452

    Article  Google Scholar 

  10. Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13:1433–1439

    Article  Google Scholar 

  11. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333

    Article  Google Scholar 

  12. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  13. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13:945–958

    Article  Google Scholar 

  14. Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1):61–106

    Article  Google Scholar 

  15. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  16. Chen Y, Mazlack LJ, Minai AA, Lu LJ (2015) Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Appl Soft Comput 37:667–679

    Article  Google Scholar 

  17. Rocha H, Peretta IS, Lima GFM, Marques LG, Yamanaka K (2015) Exterior lighting computer-automated design based on multi-criteria parallel evolutionary algorithm: optimized designs for illumination quality and energy efficiency. Expert Syst Appl 45:208–222

    Article  Google Scholar 

  18. Zhong F, Yuan B, Li B (2015) A hybrid evolutionary algorithm for multi-objective variation tolerant logic mapping on nanoscale crossbar architectures. Appl Soft Comput 38:955–966

    Article  Google Scholar 

  19. Lei H, Wang R, Laporte G (2015) Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary algorithm. Comput Oper Res 67:12–24

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo W, Zhang Y, Chen M, Wang L, Wu Q (2015) Fuzzy performance evaluation of Evolutionary Algorithms based on extreme learning classifier. Neurocomputing 175:371–382

    Article  Google Scholar 

  21. Chica M, Bautista J, Cordón O, Damas S (2015) A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand. Omega 58:55–68

    Article  Google Scholar 

  22. Pascual GG, Lopez-Herrejon RE, Pinto M, Fuentes L, Egyed A (2015) Applying multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications. J Syst Softw 103:392–411

    Article  Google Scholar 

  23. Stępień J, Filipiak S (2014) Application of the evolutionary algorithm with memory at the population level for restoration service of electric power distribution networks. Int J Electr Power Energy Syst 63:695–704

    Article  Google Scholar 

  24. Menai MEB (2014) Word sense disambiguation using evolutionary algorithms—Application to Arabic language. Comput Hum Behav 41:92–103

    Article  Google Scholar 

  25. Marques I, Captivo ME (2015) Bicriteria elective surgery scheduling using an evolutionary algorithm. Oper Res Health Care 7:14–26

    Article  Google Scholar 

  26. Ono S, Maeda H, Sakimoto K, Nakayama S (2014) User-system cooperative evolutionary computation for both quantitative and qualitative objective optimization in image processing filter design. Appl Soft Comput 15:203–218

    Article  Google Scholar 

  27. Ayllón D, Gil-Pita R, Utrilla-Manso M, Rosa-Zurera M (2014) An evolutionary algorithm to optimize the microphone array configuration for speech acquisition in vehicles. Eng Appl Artif Intell 34:37–44

    Article  Google Scholar 

  28. Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 6:58–73

    Article  Google Scholar 

  29. Blum C, Merkle D (2008) Swarm intelligence: Introduction and applications., Natural Computing SeriesSpringer, Berlin

    Book  MATH  Google Scholar 

  30. Marini F, Walczak B (2015) Particle swarm optimization (PSO). A tutorial. Chemometr Intell Lab Syst 149:153–165

    Article  Google Scholar 

  31. Yang XS, Deb S (2009) Cuckoo search via levy flights. World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 4:210–214

  32. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10:281–295

    Article  Google Scholar 

  33. Omran MGH, Clerc M (2011) http://www.particleswarm.info/. Accessed 15 Nov 2015

  34. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  35. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. IEEE Trans Evolut Comput 1(3):1785–1791

    Google Scholar 

  36. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evol Comput 15(1):1–28

    Article  Google Scholar 

  37. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10:646–657

    Article  Google Scholar 

  38. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144

    MathSciNet  MATH  Google Scholar 

  39. CoelloCoello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Article  Google Scholar 

  40. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Article  Google Scholar 

  41. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  42. Kumar R, Jyotishree (2012) Blending roulette wheel selection and rank selection in genetic algorithms. Int J Mach Learn Comput 2(4):365–370

    Article  Google Scholar 

  43. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  44. Moradi MH, Abedini M (2012) A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Electr Power Energy Syst 34:66–74

    Article  Google Scholar 

  45. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report 1–50

  46. Heidari AA, Abbaspour RA, Jordehi AR (2015) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl. doi:10.1007/s00521-015-2037-2

  47. Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evolut Comput 16(2):210–224

    Article  Google Scholar 

  48. Selvi V, Umarani R (2010) Comparative analysis of ant colony and particle swarm optimization techniques. Int J Comput Appl 5(4):975–8887

    Google Scholar 

  49. Rini DP, Shamsuddin SM, Yuhaniz SS (2011) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14(1):975–8887

    Google Scholar 

  50. Murugan R, Mohan MR (2012) Modified artificial bee colony algorithm for solving economic dispatch problem. ARPN J Eng Appl Sci 7(10):1353–1366

    Google Scholar 

  51. Kulkarni AJ, Baki MF, Chaouch BA (2016) Application of the cohort-intelligence optimization method to three selected combinatorial optimization problems. Eur J Oper Res 250(2):427–447

    Article  MathSciNet  MATH  Google Scholar 

  52. Kulkarni AJ, Shabir H (2014) Solving 0-1 Knapsack Problem using Cohort Intelligence Algorithm. Int J Mach Learn Cybernet. doi:10.1007/s13042-014-0272-y

    Google Scholar 

  53. Hasançebi O, Kazemzadeh Azad S (2015) Adaptive dimensional search: a new metaheuristic algorithm for discrete truss sizing optimization. Comput Struct 154:1–16

    Article  Google Scholar 

  54. Kazemzadeh Azad S, Hasançebi O (2014) An elitist self-adaptive step-size search for structural design optimization. Appl Soft Comput 19:226–235

    Article  Google Scholar 

  55. Kazemzadeh Azad S, Hasançebi O, Kazemzadeh Azad S (2013) Upper bound strategy for metaheuristic based design optimization of steel frames. Adv Eng Softw 57:19–32

    Article  Google Scholar 

  56. Deshpande AM, Phatnani GM, Kulkarni AJ (2013) Constraint handling in firefly algorithm. In: Proceedings of IEEE international conference on cybernetics. Lausanne, Switzerland, 13–15 June 2013, pp 186–190

Download references

Acknowledgments

The authors would like to thank Frontier Science Research Cluster, University Malaya Research Fund: RG333-15AFR, for supporting this work. The authors would also like to thank anonymous reviewers for comments and suggestions that have resulted in a much improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand J. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, T.T., Kulkarni, A.J., Kanesan, J. et al. Ideology algorithm: a socio-inspired optimization methodology. Neural Comput & Applic 28 (Suppl 1), 845–876 (2017). https://doi.org/10.1007/s00521-016-2379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2379-4

Keywords

Navigation