Skip to main content
Log in

Effects of nonlinear Rosseland thermal radiation on MHD steady wall jet flow

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Analysis of wall jet flow in two dimensions through a slot is explored with magneto-hydrodynamic effects. The nonlinear Rosseland approximation is also taken into account. By using the similarity solutions, the governing equations are transformed into ordinary differential equations. A numerical solution of the problem is obtained by utilizing Runge–Kutta–Fehlberg method coupled with shooting method. Graphical representations are also made for useful analysis of the problem. The value of temperature parameter θ w > 1 is considered for the nonlinear radiation, and it has been observed that magnetic parameter plays an important role in normalizing the velocity profile and reducing the wall heat transfer. Also, it was found that radiation supported the temperature profile in a way that for incremental values of radiation parameter, we have observed an increase in thermal boundary layer thickness. Also, the Nusselt number increases for higher value of radiation parameter. Also, the rate of heat transfer increases for the fluid having high value of Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Smith WJ (1952) Effect of gas radiation in the boundary layer on aerodynamic heat transfer. J Aerosp Sci 20:579–580

    Google Scholar 

  2. Viskanta R, Grosh RJ (1962) Boundary layer in thermal radiation absorbing and emitting media Int. J Heat Mass Transf 5:795–806

    Article  Google Scholar 

  3. Perdikis C, Raptis A (1996) Heat transfer of a micropolar fluid by the presence of radiation. Heat Mass Transf 31:381–382

    Article  Google Scholar 

  4. Cortell R (2008) A numerical tackling on Sakiadis flow with thermal radiation. Chin Phys Lett 25:1340–1342

    Article  Google Scholar 

  5. Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD oldroyd-B fluid. Int J Numer Methods Heat Fluid Flow 24(2):390–401

    Article  MathSciNet  MATH  Google Scholar 

  6. Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11):2477–2483

    Article  MATH  Google Scholar 

  7. Ellahi R, Hameed M (2012) Numerical analysis of steady flows with heat transfer, MHD and nonlinear slip effects. Int J Numer Methods Heat Fluid Flow 22(1):24–38

    Article  Google Scholar 

  8. Sheikholeslami M, Ellahi R, Hassan M, Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24(8):1906–1927

    Article  Google Scholar 

  9. Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S (2015) Joules heating effects on stagnation point flow over a stretching cylinder by means of genetic algorithm and Nelder–Mead method. Int J Numer Methods Heat Fluid Flow 25(3):665–684

    Article  MATH  Google Scholar 

  10. Mabood F, Khan WA, Ismail AIM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576

    Article  Google Scholar 

  11. Sheikholeslami M, Bandpy MG, Ellahi R, Hassan M, Soleimani S (2014) Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM. J Magn Magn Mater 349:188–200

    Article  Google Scholar 

  12. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magneto hydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43

    Article  Google Scholar 

  13. Hussain ST, Ul Haq R, Noor NFM, Nadeem S (2016) Non-linear radiation effects in mixed convection stagnation point flow along a vertically stretching surface. Int J Chem Reactor Eng. doi:10.1515/ijcre-2015-0177

    Google Scholar 

  14. Noor NFM, Abbasbandy S, Hashim I (2012) Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink. Int J Heat Mass Transf 55:2122–2128

    Article  Google Scholar 

  15. Noor NFM, Hashim I (2010) Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface. Int J Heat Mass Transf 53:2044–2051

    Article  MATH  Google Scholar 

  16. Noor NFM, Hashim I (2010) MHD viscous flow over a linearly stretching sheet embedded in a non-Darcian porous medium. J Porous Media 13(4):349–355

    Article  Google Scholar 

  17. Glauert MB (1956) The wall jet. J Fluid Mech 1:625

    Article  MathSciNet  MATH  Google Scholar 

  18. Schlichting H (1933) Laminare Strahlausbreitung. Z Angew Math Mech 13(4):263

    Article  MATH  Google Scholar 

  19. Bickley W (1939) The plane jet. Philos Mag Ser 7(23):727

    MATH  Google Scholar 

  20. Akatnow NI (1953) Tr Leningr Polytekh Inst Maschgis 5:24

  21. Gutfinger C, Shinar R (1964) Velocity distributions in two-dimensional laminar liquid-into-liquid jets in power-law fluids. Adv Chem Eng 10:631

    Google Scholar 

  22. Kapur JN (1962) On the two-dimensional jet of an incompressible pseudo-plastic fluid. J Phys Soc Jpn 17(8):1303–1309

    Article  MATH  Google Scholar 

  23. Timol MG, Sirohi V, Kalthia NL (1992) Numerical solution of two-dimensional jet flow of an incompressible power-law fluid. Proc Indian Acad Sci 91:165

    MATH  Google Scholar 

  24. Chun DH, Schwarz WH (1967) Stability of the plane incompressible viscous wall jet subjected to small disturbances. Phys Fluids 10:911–915

    Article  Google Scholar 

  25. Mele P, Morganti M, Scibilia MF, Lasek A (1986) Behaviour of wall jet in laminar-to-turbulent transition. AIAA J 24:938–939

    Article  Google Scholar 

  26. Cohen J, Amitay M, Bayly BJ (1992) Laminar-turbulent transition of wall-jet flows subjected to blowing and suction. Phys Fluids A 4:283–289

    Article  MATH  Google Scholar 

  27. Amitay M, Cohen J (1993) The mean flow of a laminar wall-jet subjected to blowing or suction. Phys Fluids A 5:2053–2057

    Article  Google Scholar 

  28. Pantokratoras A, Fang T (2013) Sakiadis flow with nonlinear Rosseland thermal radiation. Phys Scr 87:015703

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to the unknown referees for their highly valuable comments which proved very effective in improving the quality of the article. This project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tauseef Mohyud-Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyud-Din, S.T., Zaidi, Z.A. & Bin-Mohsin, B. Effects of nonlinear Rosseland thermal radiation on MHD steady wall jet flow. Neural Comput & Applic 28 (Suppl 1), 749–754 (2017). https://doi.org/10.1007/s00521-016-2399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2399-0

Keywords

Navigation