Skip to main content
Log in

A GCM neural network using cubic logistic map for information processing

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A new chaotic neural network described by a modified globally coupled map (GCM) model with cubic logistic map is proposed, which is called CL-GCM model. Its rich dynamical behaviors over a wide range of parameters and the dynamics mechanism of neurons are demonstrated in detail. Furthermore, the network with delay coupling can be precisely controlled to any specified-periodic orbit by feedback control or modulated parameter control with variable threshold. The results of simulations and experiments suggest that the network is controlled successfully. The controlled CL-GCM model exhibits excellent associative memory performance which appears it can output unique fixed pattern or periodic patterns with specified period which contain the stored pattern closest to the initial pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144:333–340

    Article  MathSciNet  Google Scholar 

  2. Chen L, Aihara K (1995) Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw 8(6):915–930

    Article  Google Scholar 

  3. Freeman WJ (1985) Strange attractors in the olfactory system of rabbits. Electroencephalogr Clin Neurophysiol 61(S155–S155):139–150

    Google Scholar 

  4. Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56(2–3):139–150

    Article  Google Scholar 

  5. Tsuda I (1991) Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32(2–3):167–184

    Article  Google Scholar 

  6. Aihara K, Matsumoto G (1986) Chaotic oscillations and bifurcation in squid giant axons. In: Holden AV (ed) Chaos. Princeton University Press, Princeton, pp 257–269

    Google Scholar 

  7. Degn H, Holden AV, Olsen LF (eds) (1987) Chaos in biological systems. Plenum Press, New York

    Google Scholar 

  8. Matsumoto G, Aihara K, Hanyu Y et al (1987) Chaos and phase locking in normal squid axons. Phys Lett A 123(4):162–166

    Article  Google Scholar 

  9. Inoue M, Nagayoshi A (1991) A chaos neuro-computer. Phys Lett A 158(8):373–376

    Article  Google Scholar 

  10. Kaneko K (1990) Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Phys D 41(2):137–172

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaslik E, Balint S (2009) Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture. Neural Netw 22(10):1411–1418

    Article  Google Scholar 

  12. Lumer ED, Huberman BA (1992) Binding hierarchies: a basis for dynamic perceptual grouping. Neural Comput 4(3):341–355

    Article  Google Scholar 

  13. Liu XD, Xiu CB (2007) A novel hysteretic chaotic neural network and its applications. Neurocomputing 70(13–15):2561–2565

    Article  Google Scholar 

  14. Sun M, Zhao L, Cao W et al (2010) Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks. IEEE Trans Neural Netw 21(9):1422–1433

    Article  Google Scholar 

  15. Gail AC (1989) Neural network models for pattern recognition and associative memory. Neural Netw 2(4):243–257

    Article  Google Scholar 

  16. Sylvain C, Mounir B, Mahmood A (2009) BAM learning of nonlinearly separable tasks by using an asymmetrical output function and reinforcement learning. IEEE Trans Neural Netw 20(8):1281–1292

    Article  Google Scholar 

  17. Mahmood A, Hamed D, Alireza S et al (2010) Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks. Neural Netw 23(7):892–904

    Article  Google Scholar 

  18. Hamed D, Mahmood A, Alireza S et al (2008) Auto-associative memory based on a new hybrid model of SFNN and GRNN: performance comparison with NDRAM, ART2 and MLP. IJCNN 2008:1698–1703

    Google Scholar 

  19. Kushibe M, Liu Y, Ohtsubo J (1996) Associative memory with spatiotemporal chaos control. Phys Rev E 53(5):4502–4508

    Article  Google Scholar 

  20. He GG, Chen L, Aihara K (2008) Associative memory with a controlled chaotic neural network. Neurocomputing 71(13–15):2794–2805

    Article  Google Scholar 

  21. Zhang Q, Xie XP, Zhu P et al (2014) Sinusoidal modulation control method in a chaotic neural network. Commun Nonlinear Sci Numer Simulat 19(8):2793–2800

    Article  MathSciNet  Google Scholar 

  22. Mizutani S, Sano T, Uchiyama T et al (1998) Controlling chaos in chaotic neural networks. Electron Commun Jpn (Part 3) 81(8):73–82

    Article  Google Scholar 

  23. Nakamura K, Nakagawa M (1993) On the associative model with parameter controlled chaos neurons. J Phys Soc Jpn 62(8):2942–2955

    Article  Google Scholar 

  24. Zhang HG, Ma TD, Huang GB et al (2010) Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man Cybern B Cybern 40(3):831–844

    Article  Google Scholar 

  25. Xia M, Fang JA, Tang Y et al (2010) Dynamic depression control of chaotic neural networks for associative memory. Neurocomputing 73(4–6):776–783

    Article  Google Scholar 

  26. He GG, Cao Z, Zhu P et al (2003) Controlling chaos in a chaotic neural network. Neural Netw 16(8):1195–1200

    Article  Google Scholar 

  27. He GG, Shrimali MD, Aihara K (2008) Threshold control of chaotic neural network. Neural Netw 21(2–3):114–121

    Article  MATH  Google Scholar 

  28. Ishii S, Fukumizu K, Watanabe S (1996) A network of chaotic elements for information processing. Neural Netw 9(1):25–40

    Article  Google Scholar 

  29. Zheng L, Tang X (2005) A new parameter control method for S-GCM. Pattern Recognit Lett 26(7):939–942

    Article  Google Scholar 

  30. Kaneko K (1991) Globally coupled circle map. Phys D 54(1–2):5–19

    Article  MathSciNet  MATH  Google Scholar 

  31. Ishii S, Sato M (1998) Associative memory based on parametrically coupled chaotic elements. Phys D 121(3–4):344–366

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang T, Wang K, Jia N (2011) Chaos control and associative memory of a time-delay globally coupled neural network using symmetric map. Neurocomputing 74(10):1673–1680

    Article  Google Scholar 

  33. Wang T, Jia N, Wang KJ (2012) A novel GCM chaotic neural network for information processing. Commun Nonlinear Sci Numer Simulat 17(12):4846–4855

    Article  MATH  Google Scholar 

  34. Devaney RL (1989) An introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley, New Jersey

    MATH  Google Scholar 

  35. Zhang XD, Liu X, Zhao PD (2009) Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay (in Chinese). Acta Phys Sin 58(7):4415–4420

    MATH  Google Scholar 

  36. Shruti RK, Maryam SB (2013) Spiking neural network based ASIC for character recognition. ICNC 2013:194–199

    Google Scholar 

  37. Zhang Z, Wu Q, Zhuo Z et al (2015) Wavelet transform and texture recognition based on spiking neural network for visual images. Neurocomputing 151(3):985–998

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviews for their valuable suggestions and comments, which help us to improve this paper. This work is supported by Jilin Postdoctoral Science Foundation funded project (Grant No. RB201355), academic backbone program foundation for youth by Harbin Normal University (Grant No. KGB201222), and Project supported by the Science and Technology Pre-Research Foundations of Harbin Normal University, China (Grant No. 12XYG-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Jia, N. A GCM neural network using cubic logistic map for information processing. Neural Comput & Applic 28, 1891–1903 (2017). https://doi.org/10.1007/s00521-016-2407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2407-4

Keywords