Skip to main content

Advertisement

Log in

Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen \(\kappa\) (87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www.r-project.org.

  2. http://caret.r-forge.r-project.org.

  3. Henceforth, we will abbreviate e.g., “number of folds” or “number of neurons,” among others, as #folds or #neurons, respectively.

  4. http://www.ntu.edu.sg/home/egbhuang/elm_codes.html.

  5. http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/oil-spill/results.

References

  1. Asariotis R, Benamara H, Finkenbrink H, Hoffmann J, Jalmurzina A, Premti A, Valentine V, Youssef F (2012) Review of maritime transport, 2012. Technical report, United Nations Conference on Trade and Development, United Nations

  2. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  Google Scholar 

  3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  4. Breiman L, Friedman J, Olshen R, Stone CJ (1984) Classification and regression trees. Wadsworth and Brooks, Belmont

    MATH  Google Scholar 

  5. Brekke C, Solberg AHS (2008) Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images. IEEE Geosci Remote Sens Lett 5(1):65–69

    Article  Google Scholar 

  6. Carletta J (1996) Assessing agreement on classification tasks: the kappa statistic. Comput Linguist 22(2):249–254

    Google Scholar 

  7. Chang C, Lin C (2014) LibSVM: a library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  8. Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    MATH  Google Scholar 

  9. Cleary J, Trigg L (1995) K*: an instance-based learner using an entropic distance measure. In: 12th International conference on machine learning, pp 108–114

  10. Del Frate F, Petrocchi A, Lichtenegger J, Calabresi G (2000) Neural networks for oil spill detection using ERS-SAR data. IEEE Trans Geosci Remote Sens 38(5):2282–2287

    Article  Google Scholar 

  11. Ding B, Gentleman R (2005) Classification using generalized partial least squares. J Comput Graph Stat 14(2):280–298

    Article  MathSciNet  Google Scholar 

  12. Dobson A (1990) An introduction to generalized linear models. Chapman and Hall, London

    Book  MATH  Google Scholar 

  13. ESA (1998) Oil pollution monitoring, in ERS and its applications: Marine. Technical report, European Space Agency

  14. Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874

    MATH  Google Scholar 

  15. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15:3133–3181

    MathSciNet  MATH  Google Scholar 

  16. Fernández-Delgado M, Cernadas E, Barro S, Ribeiro J, Neves J (2014) Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation. Neural Netw 50:60–71

    Article  MATH  Google Scholar 

  17. Fingas M, Brown C (2014) Review of oil spill remote sensing. Mar Pollut Bull 83(1):9–23

    Article  Google Scholar 

  18. Flusser J, Zitova B, Suk T (2009) Affine moment invariants. In: Moments and moment invariants in pattern recognition, chap. 3. Wiley, London, pp 49–112

  19. Frank E, Witten I (1999) Generating accurate rule sets without global optimization. In: International conference on machine learning, pp 144–151

  20. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: International conference on machine learning. Morgan Kaufmann, Los Altos, pp 148–156

  21. Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–141

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 95(2):337–407

    Article  MathSciNet  MATH  Google Scholar 

  23. Garcia-Pineda O, Zimmer B, Howard M, Pichel W, XiaoFeng L, MacDonald IR (2009) Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA). Can J Remote Sens 35(5):411–421

    Article  Google Scholar 

  24. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I (2009) The Weka data mining software: an update. SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  25. He H, Garcia E (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 1263–1284

  26. Hersbach H, Stoffelen A, de Haan S (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res 112(C3):C03–006

    Article  Google Scholar 

  27. Hovland HA, Johannessen JA, Digranes G (1994) Slick detection in SAR images. In: Proceedings of IGARSS ’94–1994 IEEE international geoscience and remote sensing symposium. IEEE, pp 2038–2040

  28. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang G (2014) http://www.extreme-learning-machines.org

  30. Jackson C, Apel J (eds) (2005) Synthetic aperture Radar Marine User’s manual, 1st edn. U.S. Department of Commerce: National Oceanic and Atmospheric Administration. http://www.sarusersmanual.com (Retrieved May 2012)

  31. Joachims T (1999) Making large-scale SVM learning practical advances in Kernel methods—support vector learning. MIT-Press, Cambridge

    Google Scholar 

  32. Keramitsoglou I, Cartalis C, Kiranoudis CT (2006) Automatic identification of oil spills on satellite images. Environ Model Softw 21(5):640–652

    Article  Google Scholar 

  33. Kittler J, Hatef M, Duin R, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20:226–239

    Article  Google Scholar 

  34. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, Berlin

    Book  MATH  Google Scholar 

  35. Liu P, Zhao C, Li X, He M, Pichel W (2010) Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm. Int J Remote Sens 31(17–18):4819–4833

    Article  Google Scholar 

  36. Mera D, Cotos JM, Varela-Pet J, Garcia-Pineda O (2012) Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula. Mar Pollut Bull 64(10):2090–2096

    Article  Google Scholar 

  37. Mera D, Cotos JM, Varela-Pet J, Rodrguez PG, Caro A (2014) Automatic decision support system based on SAR data for oil spill detection. Comput Geosci 72:184–191

    Article  Google Scholar 

  38. Mercier G, Girard-Ardhuin F (2006) Partially supervised oil-slick detection by SAR imagery using kernel expansion. IEEE Trans Geosci Remote Sens 44(10):2839–2846

    Article  Google Scholar 

  39. Migliaccio M, Tranfaglia M, Ermakov SA (2005) A physical approach for the observation of oil spills in SAR images. IEEE J Ocean Eng 30(3):496–507

    Article  Google Scholar 

  40. Nissen S (2014) FANN: fast artificial neural networks, v. 2.1.0. http://leenissen.dk/fann/wp

  41. Pavlakis P, Tarchi D, Sieber A (2001) On the monitoring of illicit vessel discharges using spaceborne sar remote sensing—a reconnaissance study in the Mediterranean sea. Ann Telecommun 56(11):700–718

    Google Scholar 

  42. Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press, Cambridge, pp 185–208

    Google Scholar 

  43. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  44. Rodríguez J, Kuncheva L, Alonso C (2006) Rotation Forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630

    Article  Google Scholar 

  45. Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a Kernel eigenvalue problem. Neural Comput 1299–1319

  46. Singha S, Bellerby TJ, Trieschmann O (2013) Satellite oil spill detection using artificial neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2355–2363

    Article  Google Scholar 

  47. Solberg AHS, Brekke C, Husoy PO (2007) Oil spill detection in Radarsat and Envisat SAR images. IEEE Trans Geosci Remote Sens 45(3):746–755

    Article  Google Scholar 

  48. Specht D (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  49. Suykens J, Vandewalle J (1999) Least Squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MATH  Google Scholar 

  50. Topouzelis K, Karathanassi V, Pavlakis P, Rokos D (2007) Detection and discrimination between oil spills and look-alike phenomena through neural networks. ISPRS J Photogramm Remote Sens 62(4):264–270

    Article  Google Scholar 

  51. Topouzelis K, Psyllos A (2012) Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J Photogramm Remote Sens 68:135–143

    Article  Google Scholar 

  52. Wang Z, Shao Y, Wu T (2014) Proximal parametric-margin support vector classifier and its applications. Neural Comput Appl 24:755–764

    Article  Google Scholar 

  53. Webb G (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196

    Article  Google Scholar 

  54. Wolpert D (1992) Stacked generalization. Neural Netw 5:241–259

    Article  Google Scholar 

  55. Youden W (1950) Index for rating diagnostic tests. Cancer 3:32–35

    Article  Google Scholar 

Download references

Acknowledgments

Work developed with the help and data provided by SASEMAR, and the financial support of the Deputación da Coruña and the Spanish Ministry of Science and Innovation (MICINN) under Projects TIN2011-22935 and TIN2012-32262.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fernández-Delgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mera, D., Fernández-Delgado, M., Cotos, J.M. et al. Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images. Neural Comput & Applic 28 (Suppl 1), 1101–1117 (2017). https://doi.org/10.1007/s00521-016-2415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2415-4

Keywords

Navigation