Abstract
This paper employs three different kernel-based models—support vector regression (SVR), relevance vector machine (RVM) and Gaussian process regression (GPR)—for the prediction of cement compressive strength. The input variables for the model are taken as C3S (%), SO3 (%), Alkali (%) and Blaine (cm2/g), while the output is 28-day cement compressive strength (N/mm2) of the cement. The hyperparameters of the SVR are obtained using two different metaheuristic optimization algorithms—particle swarm optimization (PSO) and symbiotic organism search (SOS). Trial-and-error-based approach is used for arriving at the hyperparameters of RVM and GPR. The compressive strength predicted using different kernel-based models is also compared with that obtained from ANN and fuzzy logic models reported in the literature. The performance of the different kernel-based models is benchmarked using six different error indices and residual analysis. The performance of the kernel-based models is found to be at par with ANN. The better generalization capability and excellent empirical performance of the kernel-based models overcome the disadvantages associated with ANN and provide a good tool for the prediction of the cement compressive strength.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Osbaeck B, Johansen V (1989) Particle size distribution and rate of strength development of Portland cement. J Am Ceram Soc 72(2):197–201
Celik IB (2009) The effects of particle size distribution and surface area upon cement strength development. Powder Technol 188(3):272–276
Chen JJ, Kwan AKH (2012) Superfine cement for improving packing density, rheology and strength of cement paste. Cem Concr Compos 34(1):1–10
Osbaeck B (1979) The influence of Alkalis on the strength properties of Portland cement. ZKG 32:72–77
Mechling J-M, Lecomte A, Diliberto C (2009) Relation between cement composition and compressive strength of pure pastes. Cem Concr Compos 31(4):255–262
De Siquera Tango CE (1998) An extrapolation method for compressive strength prediction of hydraulic cement products. Cem Concr Res 28(7):969–983
Svinning K, Høskuldsson A, Justnes H (2010) Prediction of potential compressive strength of Portland clinker from its mineralogy. Cem Concr Compos 32(4):300–311
Tsivilis S, Chaniotakis E, Badogiannisa E, Pahoulasa G, Iliasa A (1999) A study on the parameters affecting the properties of Portland limestone cements. Cem Concr Compos 21(2):107–116
Motamedi S, Shamshirband S, Hashim R, Petković D, Roy C (2015) Estimating unconfined compressive strength of cockle shell–cement–sand mixtures using soft computing methodologies. Eng Struct 98:49–58
Motamedi S, Shamshirband S, Petković D, Hashim R (2015) Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA–sand–cement mixture. Powder Technol 278:278–285
Sebastia M, Olmo IF, Irabien A (2003) Neural network prediction of unconfined compressive strength of coal fly ash–cement mixtures. Cem Concr Res 33:1137–1146
Fa-Liang G (1997) A new way of predicting cement strength-fuzzy logic. Cem Concr Res 27:883–888
Akkurt S, Ozdemir S, Tayfur G, Akyol B (2003) The use of GA-ANNs in the modelling of compressive strength of cement mortar. Cem Concr Res 33:973–979
Akkurt S, Tayfur G, Can S (2004) Fuzzy logic model for the prediction of cement compressive strength. Cem Concr Res 34:1429–1433
Zhang J, Sato T, Iai S (2006) Support vector regression for on-line health monitoring of large-scale structures. Struct Saf 28(4):392–406
Chen BT, Chang T-P, Shih J-Y, Wa J-J (2008) Estimation of exposed temperature for fire-damaged concrete using support vector machine. Comput Mater Sci 44:913–920
Lee JJ, Kim DK, Chang SK, Lee JH (2007) Application of support vector regression for the prediction of concrete strength. Comput Concr 4(4):299–316
Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly stream flow using endogenous property. Hydrol Process 24(7):917–923
Camps-Valls G, Gómez-Chova L, Muñoz-Marí J, Vila-Francés J, Amorós-López J, Calpe-Maravilla J (2006) Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sens Environ 105(1):23–33
Lázaro-Gredilla M, Titsias MK, Verrelst J, Camps-Valls G (2014) Retrieval of biophysical parameters with heteroscedastic Gaussian processes. IEEE Geosci Remote Sens Lett 11(4):838–842
Yuvaraj P, Murthy AR, Iyer NR, Sekar SK, Samui P (2013) Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng Fract Mech 98:29–43
Vapnik V (2000) The nature of statistical learning theory. Springer, New York
Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge
Williams CKI (1998) Prediction with Gaussian processes: from linear regression and beyond. In: Jordan MI (ed) Learning and inference in graphical models. Kluwer Academic Press, Dordrecht, pp 599–621
Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, New York, pp 303–308
Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112
Vapnik V (1999) An overview of statistical learning theory. IEEE Trans Neural Network 10(5):988–999
Owolabi TO, Faiz M, Olatunji SO, Popoola IK (2016) Computational intelligence method of determining the energy band gap of doped ZnO semiconductor. Mater Des 101:277–284
Bermolen P, Rossi D (2009) Support vector regression for link load prediction. Comput Netw 53(2):191–201
Fattahi H, Gholami A, Amiribakhtiar MS, Moradi S (2015) Estimation of asphaltene precipitation from titration data: a hybrid support vector regression with harmony search. Neural Comput Appl 26(4):789–798
Hasanipanah M, Shahnazar A, Amnieh HB, Armaghani DJ (2016) Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model. Eng Comput. doi:10.1007/s00366-016-0453-2
Huang CL, Tsai CY (2009) A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Syst Appl 36(2):1529–1539
Lu CJ (2013) Hybridizing nonlinear independent component analysis and support vector regression with particle swarm optimization for stock index forecasting. Neural Comput Appl 23(7–8):2417–2427
Gunn SR (1998) Support vector machines for classification and regression. Technical report, Image Speech and Intelligent Systems Research Group, University of Southampton
European Committee for Standardization (CEN), Methods of testing cement part 1: determination of strength. European Standard EN 196-1
Acknowledgments
Authors would also like to thank and acknowledge the help received from their colleagues of Shock and Vibration Group, CSIR-SERC and Mr. Prabhat Ranjan Prem, Scientist, AML, CSIR - SERC. This paper is being published with the kind permission of the Director, CSIR-SERC, Chennai.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Verma, M., Thirumalaiselvi, A. & Rajasankar, J. Kernel-based models for prediction of cement compressive strength. Neural Comput & Applic 28 (Suppl 1), 1083–1100 (2017). https://doi.org/10.1007/s00521-016-2419-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-016-2419-0