Skip to main content
Log in

Application of ELM–Hammerstein model to the identification of solid oxide fuel cells

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new method is proposed to identify solid oxide fuel cell using extreme learning machine–Hammerstein model (ELM–Hammerstein). The ELM–Hammerstein model consists of a static ELM neural network followed by a linear dynamic subsystem. First, the structure of ELM–Hammerstein model is determined by Lipschitz quotient criterion from input–output data. Then, a generalized ELM algorithm is proposed to estimate the parameters of ELM–Hammerstein model, including the parameters of linear dynamic part and the output weights of ELM. The proposed method can obtain accurate identification results and its computation is more efficient. Simulation results demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abonyi J, Babuška R, Botto MA, Szeifert F, Nagy L (2000) Identification and control of nonlinear systems using fuzzy Hammerstein models. Ind Eng Chem Res 39(11):4302–4314

    Article  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  3. Arriagada J, Olausson P, Selimovic A (2002) Artificial neural network simulator for SOFC performance prediction. J Power Sources 112(1):54–60

    Article  Google Scholar 

  4. Cui M, Liu H, Li Z, Tang Y, Guan X (2014) Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142:419–428

    Article  Google Scholar 

  5. Deng J, Li K, Irwin GW (2011) Fast automatic two-stage nonlinear model identification based on the extreme learning machine. Neurocomputing 74(16):2422–2429

    Article  Google Scholar 

  6. Fink A, Nelles O (2001) Nonlinear internal model control based on local linear neural networks. In: 2001 IEEE international conference on systems, man, and cybernetics, vol 1, pp 117–122

  7. Hajimolana S, Hussain M, Daud WW (2011) Mathematical modeling of solid oxide fuel cells: a review. Renew Sustain Energy Rev 15:1893–1917

    Article  Google Scholar 

  8. He X, Asada H (1993) A new method for identifying orders of input–output models for nonlinear dynamic systems. In: American control conference, pp 2520–2523

  9. Hong X, Chen S (2012) The system identification and control of Hammerstein system using non-uniform rational B-spline neural network and particle swarm optimization. Neurocomputing 82:216–223

    Article  Google Scholar 

  10. Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  MATH  Google Scholar 

  11. Huang GB (2015) What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 7(3):263–278

    Article  Google Scholar 

  12. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, vol 2, pp 985–990

  13. Huo HB, Zhu XJ, Tu HY (2007) Iterative learning control of SOFC based on ARX identification model. J Zhejiang Univ Sci A 8:1921–1927

    Article  MATH  Google Scholar 

  14. Huo H, Kuang X, Huo H, Zhu X (2012) Dynamic modeling of SOFC stack using ARX identification algorithm. In: Proceedings of international conference on modelling, identification & control (ICMIC), 2012

  15. Huo HB, Zhong ZD, Zhu XJ, Tu HY (2008) Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model. J. Power Sources 175(1):441–446

    Article  Google Scholar 

  16. Iora P, Aguiar P, Adjiman C, Brandon N (2005) Comparison of two IT DIR-SOFC models: impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis. Chem Eng Sci 60(11):2963–2975

    Article  Google Scholar 

  17. Jia L, Chiu MS, Ge SS (2005) A noniterative neuro-fuzzy based identification method for Hammerstein processes. J Process Control 15(7):749–761

    Article  Google Scholar 

  18. Jia L, Chiu MS, Ge SS (2005) Iterative identification of neuro-fuzzy-based Hammerstein model with global convergence. Ind Eng Chem Res 44(6):1823–1831

    Article  Google Scholar 

  19. Padullés J, Ault GW, McDonald JR (2000) An integrated SOFC plant dynamic model for power system simulation. J Power Sources 86:495–500

    Article  Google Scholar 

  20. Jurado F (2004) Modeling SOFC plants on the distribution system using identification algorithms. J Power Sources 129(2):205–215

    Article  Google Scholar 

  21. Jurado F (2006) A method for the identification of solid oxide fuel cells using a Hammerstein model. J Power Sources 154(1):145–152

    Article  Google Scholar 

  22. Le F, Markovsky I, Freeman CT, Rogers E (2012) Recursive identification of Hammerstein systems with application to electrically stimulated muscle. Control Eng Pract 20:386–396

    Article  Google Scholar 

  23. Li Y, Rajakaruna S, Choi SS (2007) Control of a solid oxide fuel cell power plant in a grid-connected system. IEEE Trans Energy Convers 22:405–413

    Article  Google Scholar 

  24. Li Y, Shen J, Lu J (2011) Constrained model predictive control of a solid oxide fuel cell based on genetic optimization. J Power Sources 196:5873–5880

    Article  Google Scholar 

  25. Lunghi P, Ubertini U (2001) Solid oxide fuel cells and regenerated gas turbines hybrid systems: a feasible solution for future ultra high efficiency power plants. In: Proceedings of the seventh international symposium on solid oxide fuel cells (SOFC-VII)

  26. Nehter P (2006) Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane. J Power Sources 157(1):325–334

    Article  Google Scholar 

  27. Ota T, Koyama M, Ju Wen C, Yamada K, Takahashi H (2003) Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC. J Power Sources 118:430–439

    Article  Google Scholar 

  28. Razbani O, Assadi M (2014) Artificial neural network model of a short stack solid oxide fuel cell based on experimental data. J Power Sources 246:581–586

    Article  Google Scholar 

  29. Recknagle K, Williford R, Chick L, Rector D, Khaleel M (2003) Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. J Power Sources 113(1):109–114

    Article  Google Scholar 

  30. Adachi S, Murakami H (1995) Generalized predictive control system design based on non-linear identification by using Hammerstein. Trans Inst Syst Control Inf Eng 8:115–121 (in Japanese)

    Google Scholar 

  31. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi J, XU X, Dai Y (2011) Identification of Hammerstein LSSVM–ARMA systems and its application in continuous stirred tank rector. Energy Proc 13:5359–5365

    Article  Google Scholar 

  33. Su HT, McAvoy TJ (1993) Integration of multilayer perceptron networks and linear dynamic models: a Hammerstein modeling approach. Ind Eng Chem Res 32:1927–1936

    Article  Google Scholar 

  34. Tang Y, Li Z, Guan X (2014) Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun Nonlinear Sci Numer Simul 19(9):3171–3183

    Article  MathSciNet  Google Scholar 

  35. Togun N, Baysec S, Kara T (2012) Nonlinear modeling and identification of a spark ignition engine torque. Mech Syst Sig Process 26:294–304

    Article  Google Scholar 

  36. Wang S, Wang W, Liu F, Tang Y, Guan X (2015) Identification of chaotic system using Hammerstein–ELM model. Nonlinear Dyn 81(3):1081–1095

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu W, Jhao DW (2012) Identification and control of a fuel cell system using wavelet network-based Hammerstein models. In: the 8th IFAC symposium on advanced control of chemical processes, Singapore, pp 10–13

  38. Wu XJ, Zhu XJ, Cao GY, Tu HY (2007) Modeling a SOFC stack based on GA-RBF neural networks identification. J Power Sources 167(1):145–150

    Article  Google Scholar 

  39. Wu XJ, Zhu XJ, Cao GY, Tu HY (2008) Nonlinear modeling of SOFC stack based on ANFIS identificaiton. Simul Model Parct Theor 16:399–409

    Article  Google Scholar 

  40. Yokoo M, Take T (2004) Simulation analysis of a system combining solid oxide and polymer electrolyte fuel cells. J Power Sources 137(2):206–215

    Article  Google Scholar 

  41. Zhu QY, Qin A, Suganthan P, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38:1759–1763

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Nos. 61273260, 61471313), Natural Science Foundation of Hebei Province (No. F2014203208), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121333120010), China Postdoctoral Science Foundation (Nos. 2013M530888, 2014T70229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggan Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Bu, C., Liu, M. et al. Application of ELM–Hammerstein model to the identification of solid oxide fuel cells. Neural Comput & Applic 29, 401–411 (2018). https://doi.org/10.1007/s00521-016-2453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2453-y

Keywords

Navigation