Skip to main content
Log in

Rotating flow of viscoelastic fluid with nonlinear thermal radiation: a numerical study

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work is concerned with the numerical solution for rotating viscoelastic flow developed by an exponentially stretching impermeable surface. Temperature at the sheet is also assumed to vary exponentially. Energy equation involves the novel nonlinear radiation heat flux term. Suitable transformations are utilized to nondimensionalize the relevant boundary layer equations. Numerical solutions are developed by means of standard shooting approach. The results demonstrate that both rotation and viscoelasticity serve to reduce the hydrodynamic boundary layer thickness. Temperature function has a special S-shaped profile when the difference between wall and ambient temperatures is sufficiently large. Heat transfer coefficient at the surface diminishes when rotation parameter is increased. Current numerical computations are consistent with those of the existing studies in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abel MS, Tawade JV, Nandeppanavar MM (2012) MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47:385–393

    Article  MathSciNet  MATH  Google Scholar 

  2. Hayat T, Mustafa M, Shehzad SA, Obaidat S (2012) Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet. Int J Numer Methods Fluids 68:233–243

    Article  MathSciNet  MATH  Google Scholar 

  3. Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett 38:87–93

    Article  MathSciNet  MATH  Google Scholar 

  4. Mustafa M (2015) Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Adv. doi:10.1063/1.4917306

    Google Scholar 

  5. Mustafa M, Khan JA, Hayat T, Alsaedi A (2015) Simulations for Maxwell fluid flow past a convectively heated exponentially stretching sheet with nanoparticles. AIP Adv. doi:10.1063/1.4916364

    Google Scholar 

  6. Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Numerical study of Cattaneo–Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLoS ONE. doi:10.1371/journal.pone.0137363

    Google Scholar 

  7. Li C, Zheng L, Zhang X, Chen G (2016) Flow and heat transfer of a generalized Maxwell fluid with modified fractional Fourier’s law and Darcy’s law. Comp Fluids 125:25–38

    Article  MathSciNet  Google Scholar 

  8. Khan N, Mahmood T, Sajid M, Hashmi MS (2016) Heat and mass transfer on MHD mixed convection axisymmetric chemically reactive flow of Maxwell fluid driven by exothermal and isothermal stretching disks. Int J Heat Mass Transf 92:1090–1105

    Article  Google Scholar 

  9. Mushtaq A, Abbasbandy S, Mustafa M, Hayat T, Alsaedi A (2016) Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo–Christov heat flux model. AIP Adv. doi:10.1063/14940133

    Google Scholar 

  10. Mushtaq A, Mustafa M, Hayat T, Alsaedi A (2016) A numerical study for three-dimensional viscoelastic flow inspired by non-linear radiative heat flux. Int J Non-Linear Mech 79:83–87

    Article  Google Scholar 

  11. Wang CY (1988) Stretching a surface in a rotating fluid. ZAMP 39:177–185

    Article  MATH  Google Scholar 

  12. Nazar R, Amin N, Pop I (2004) Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech Res Commun 31:121–128

    Article  MATH  Google Scholar 

  13. Turkyilmazoglu M (2010) Numerical computation of unsteady flows with an implicit spectral method over a disk in still air. Numer Heat Transf 57:40–53

    Article  Google Scholar 

  14. Javed T, Sajid M, Abbas Z, Ali N (2011) Non-similar solution for rotating flow over an exponentially stretching surface. Int J Numer Methods Heat Fluid Flow 21:903–908

    Article  MathSciNet  Google Scholar 

  15. Zaimi K, Ishak A, Pop I (2013) Stretching surface in rotating viscoelastic fluid. Appl Math Mech 34:945–952

    Article  MathSciNet  Google Scholar 

  16. Rosali H, Ishak A, Nazar R, Pop I (2015) Rotating flow over an exponentially shrinking sheet with suction. J Mol Liq 211:965–969

    Article  Google Scholar 

  17. Hayat T, Qayyum S, Imtiaz M, Alsaedi A (2016) Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model. AIP Adv. doi:10.1063/1.4942091

    Google Scholar 

  18. Khan JA, Mustafa M, Mushtaq A (2016) On three-dimensional flow of nanofluids past a convectively heated deformable surface: a numerical study. Int J Heat Mass Transf 94:49–55

    Article  Google Scholar 

  19. Mustafa M, Mushtaq A, Hayat T, Alsaedi A (2016) Rotating flow of magnetite-water nanofluid over a stretching surface inspired by non-linear thermal radiation. PLoS ONE. doi:10.1371/journal.pone.0149304

    Google Scholar 

  20. Raptis A (1998) Radiation and free convection flow through a porous medium. Int Commun Heat Mass Transf 25:289–295

    Article  Google Scholar 

  21. Bakier AY (2001) Thermal radiation effect on mixed convection from vertical surface in saturated porous media. Int Commun Heat Mass Transf 28:119–126

    Article  MATH  Google Scholar 

  22. Cortell R (2008) A numerical tackling on Sakiadis flow with thermal radiation. Chin Phys Lett 25:1340–1342

    Article  Google Scholar 

  23. Magyari E, Pantokratoras A (2011) Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int J Heat Mass Transf 38:554–556

    Article  Google Scholar 

  24. Rahman MM, Al-tayeb IA (2013) Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition. Meccanica 48:601–615

    Article  MathSciNet  MATH  Google Scholar 

  25. Pantokratoras A, Fang T (2014) Blasius flow with non-linear Rosseland thermal radiation. Meccan 49:1539–1545

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustafa M, Mushtaq A, Hayat T, Ahmad B (2014) Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study. PLoS ONE. doi:10.1371/journal.pone.0103946

    Google Scholar 

  27. Mustafa M, Mushtaq A, Hayat T, Alsaedi A (2015) Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet. J Taiwan Inst Chem Eng 47:43–49

    Article  Google Scholar 

  28. Mustafa M, Mushtaq A, Hayat T, Alsaedi A (2015) Model to study the non-linear radiation heat transfer in the stagnation-point flow of power-law fluid. Int J Numer Methods Heat Fluid Flow 25:1107–1119

    Article  MathSciNet  MATH  Google Scholar 

  29. Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater 396:31–37

    Article  Google Scholar 

  30. Hayat T, Muhammad T, Alsaedi A, Alhuthali MS (2015) Magneto hydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater 385:222–229

    Article  Google Scholar 

  31. Prasannakumara BC, Gireesha BJ, Gorla RSR, Krishnamurthy MR (2016) Effects of chemical reaction and nonlinear radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium. J Aerosp Eng. doi:10.1061/(ASCE)AS.1943-5525.0000578

    Google Scholar 

  32. Turkyilmazoglu M (2016) Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Phys Fluids. doi:10.1063/1.4945650

    Google Scholar 

  33. Dehghan M, Salehi R (2014) A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:99–110

    Article  MathSciNet  MATH  Google Scholar 

  34. Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351

    Article  MathSciNet  MATH  Google Scholar 

  35. Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank–Nicolson scheme and the method of lines (MOL). Comput Math Appl 70:2292–2315

    Article  MathSciNet  Google Scholar 

  36. Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus. doi:10.1140/epjp/i2014-14248-2

    Google Scholar 

  37. Kandelousi MS (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378:3331–3339

    Article  MATH  Google Scholar 

  38. Turkyilmazoglu M (2012) Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface. J Heat Transf 134:071701. doi:10.1115/1.4006165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, M., Ahmad, R., Hayat, T. et al. Rotating flow of viscoelastic fluid with nonlinear thermal radiation: a numerical study. Neural Comput & Applic 29, 493–499 (2018). https://doi.org/10.1007/s00521-016-2462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2462-x

Keywords

Navigation