Skip to main content
Log in

A new MILP model proposal in feed formulation and using a hybrid-linear binary PSO (H-LBP) approach for alternative solutions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Large-scale feed factories may have multiple production and storage facilities. Any production facility uses its own available raw materials while performing feed formulation. However, ensuring a reasonable cost is achieved, and the desired quality criteria are met, may require obtaining a certain amount of raw material from other facilities. Selecting a specific amount of raw materials among many raw materials in different facilities requires many combinations to be tried out. Providing solutions, especially when there is a large amount of the raw material, may be costly and take more time. A new mixed-integer linear programming (MILP) model that specifies the type of material and the amount of the material to be selected from external facilities has been proposed in this study. When deterministic methods like MILP are used, only one solution result is obtained. However, when the decision-maker would like to see alternative results, solution constraints can be mitigated and a solution provided within the same or similar time. A new method named hybrid-linear binary PSO (H-LBP) has been proposed in this study for the problems that the decision-maker had limited time for and for which the solution results were required in a shorter time. Continuous particle swarm optimization, which works as a hybrid with linear programming, has been used in this method. The new model proposed in this study was tested on the mixed feeds for sheep, cattle and rabbit species by using both MILP and the proposed H-LBP methods. Raw materials determined by the model were added to the mixture, and the cost in each of the three species was observed to go down. In addition, different alternative solutions at reasonable cost and similar quality were presented to the producer/decision-maker in a shorter time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Waugh FV (1951) The minimum-cost dairy feed (an application of “linear programming”). J Farm Econ 33:299–310

    Article  Google Scholar 

  2. Barbieri MA, Cuzon G (1980) Improved nutrient specification for linear programming of penaeid rations. Aquaculture 19(4):313–323. doi:10.1016/0044-8486(80)90080-0

    Article  Google Scholar 

  3. De Kock HC, Sinclair M (1987) Multi-mix feedstock problems on microcomputers. J Oper Res Soc 38(7):585–590. doi:10.2307/2582395

    Article  Google Scholar 

  4. Chappell AE (1974) Linear programming cuts costs in production of animal feeds. J Oper Res Soc 25(1):19–26

    Article  Google Scholar 

  5. Munford AG (1989) A microcomputer system for formulating animal diets which may involve liquid raw materials. Eur J Oper Res 41(3):270–276. doi:10.1016/0377-2217(89)90248-8

    Article  Google Scholar 

  6. Munford AG (1996) The use of iterative linear programming in practical applications of animal diet formulation. Math Comput Simul 42(2–3):255–261. doi:10.1016/0378-4754(95)00115-8

    Article  MATH  Google Scholar 

  7. Chakeredza S, Akinnifesi FK, Ajayi OC, Sileshi G, Simon M, Gondwe FMT (2008) A simple method of formulating least-cost diets for smallholder dairy production in sub-Saharan Africa. Afr J Biotechnol 7(16):2925–2933

    Google Scholar 

  8. Glen JJ (1980) A mathematical programming approach to beef feedlot optimization. Manage Sci 26(5):524–535. doi:10.1287/mnsc.26.5.524

    Article  Google Scholar 

  9. Htun MS, Thein TT, Tin TP (2005) Linear programming approach to diet problem for black tiger shrimp in shrimp aquaculture. In: 2005. APSITT 2005 proceedings. 6th Asia-Pacific symposium on information and telecommunication technologies, 10–10 Nov 2005, pp 165–170. doi:10.1109/APSITT.2005.203650

  10. Mohr GM (1972) The bulk constraint and computer formulations of leastcost feed mixes. Rev Mark Agric Econ 40(1):15–28

    MathSciNet  Google Scholar 

  11. O’Connor JD, Sniffen CJ, Fox DG, Milligan RA (1989) Least cost dairy cattle ration formulation model based on the degradable protein system. J Dairy Sci 72(10):2733–2745. doi:10.3168/jds.S0022-0302(89)79417-0

    Article  Google Scholar 

  12. Rehman T, Romero C (1984) Multiple-criteria decision-making techniques and their role in livestock ration formulation. Agric Syst 15(1):23–49. doi:10.1016/0308-521X(84)90016-7

    Article  Google Scholar 

  13. Rehman T, Romero C (1987) Goal programming with penalty functions and livestock ration formulation. Agric Syst 23(2):117–132. doi:10.1016/0308-521X(87)90090-4

    Article  Google Scholar 

  14. Zhang F, Roush WB (2002) Multiple-objective (goal) programming model for feed formulation: an example for reducing nutrient variation. Poult Sci 81(2):182–192. doi:10.1093/ps/81.2.182

    Article  Google Scholar 

  15. Lara P, Romero C (1992) An interactive multigoal programming model for determining livestock rations: an application to dairy cows in Andalusia, Spain. J Oper Res Soc 43(10):945–953. doi:10.2307/2584548

    Article  MATH  Google Scholar 

  16. Tozer PR, Stokes JR (2001) A multi-objective programming approach to feed ration balancing and nutrient management. Agric Syst 67(3):201–215. doi:10.1016/S0308-521X(00)00056-1

    Article  Google Scholar 

  17. Pomar C, Dubeau F, Létourneau-Montminy MP, Boucher C, Julien PO (2007) Reducing phosphorus concentration in pig diets by adding an environmental objective to the traditional feed formulation algorithm. Livest Sci 111(1–2):16–27. doi:10.1016/j.livsci.2006.11.011

    Article  Google Scholar 

  18. Mitani K, Nakayama H (1997) A multiobjective diet planning support system using the satisficing trade-off method. J Multi Criteria Decis Anal 6(3):131–139. doi:10.1002/(SICI)1099-1360(199705)6:3<131:AID-MCDA129>3.0.CO;2-S

    Article  MATH  Google Scholar 

  19. Glen JJ (1986) A linear programming model for an integrated crop and intensive beef production enterprise. J Oper Res Soc 37(5):487–494. doi:10.2307/2582671

    Article  Google Scholar 

  20. Polimeno F, Rehman T, Neal H, Yates CM (1999) Integrating the use of linear and dynamic programming methods for diary cow diet formulation. J Oper Res Soc 50(9):931–942. doi:10.2307/3010190

    MATH  Google Scholar 

  21. Cadenas JM, Pelta DA, Pelta HR, Verdegay JL (2004) Application of fuzzy optimization to diet problems in Argentinean farms. Eur J Oper Res 158(1):218–228. doi:10.1016/S0377-2217(03)00356-4

    Article  MATH  Google Scholar 

  22. Furuya T, Satake T, Minami Y (1997) Evolutionary programming for mix design. Comput Electron Agric 18(2–3):129–135. doi:10.1016/S0168-1699(97)00025-2

    Article  Google Scholar 

  23. Altun AA, Şahman MA (2013) Cost optimization of mixed feeds with the particle swarm optimization method. Neural Comput Appl 22(2):383–390. doi:10.1007/s00521-011-0701-8

    Article  Google Scholar 

  24. Li F-C, Jin C-X (2008) Study on fuzzy optimization methods based on principal operation and inequity degree. Comput Math Appl 56(6):1545–1555. doi:10.1016/j.camwa.2008.02.042

    Article  MathSciNet  MATH  Google Scholar 

  25. Genova K (2011) A heuristic algorithm for solving mixed integer problems. Cybern Inf Technol 11(2):3–12

    MathSciNet  Google Scholar 

  26. Garey MR, Johnson DS (1979) A guide to the theory of NP-completeness. In: Klee V (ed) Computers and intractability. W H Freeman and Company, New York, pp 1–15

    Google Scholar 

  27. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Dover Publications Inc, Mineola, pp 156–190

    MATH  Google Scholar 

  28. Gendreau M, Potvin J-Y (2005) Metaheuristics in combinatorial optimization. Ann Oper Res 140(1):189–213. doi:10.1007/s10479-005-3971-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Wilbaut C, Hanafi S (2009) New convergent heuristics for 0–1 mixed integer programming. Eur J Oper Res 195(1):62–74. doi:10.1016/j.ejor.2008.01.044

    Article  MathSciNet  MATH  Google Scholar 

  30. Kıran MS, İşcan H, Gündüz M (2012) The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem. Neural Comput Appl 23(1):9–21. doi:10.1007/s00521-011-0794-0

    Article  Google Scholar 

  31. Glover F, Laguna M (1997) General purpose heuristics for integer programming—part I. J Heuristics 2(4):343–358. doi:10.1007/BF00132504

    Article  MATH  Google Scholar 

  32. Glover F, Laguna M (1997) General purpose heuristics for integer programming—part II. J Heuristics 3(2):161–179. doi:10.1023/A:1009631530787

    Article  MATH  Google Scholar 

  33. Ibaraki T, Ohashi T, Mine H (1974) A heuristic algorithm for mixed-integer programming problems. In: Balinski ML (ed) Approaches to integer programming, vol 2. Mathematical programming studies. Springer, Berlin, pp 115–136. doi:10.1007/BFb0120691

    Chapter  Google Scholar 

  34. Luo Y-C, Guignard M, Chen C-H (2001) A hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization. J Intell Manuf 12(5–6):509–519. doi:10.1023/A:1012256521687

    Article  Google Scholar 

  35. Sgurev V, Vassilev V, Vladimirov P (1985) An algorithm of external feasible integer directions for integer programming problems. In: Coelho JD, Tavares LV (eds) Or models on microcomputers. North-Holland Publishing Company, Amsterdam, pp 137–146

    Google Scholar 

  36. Rahman RA, Chooi-Leng A, Ramli R (2010) Investigating feed mix problem approaches: an overview and potential solution. World Acad Sci Eng Technol 47:424–432

    Google Scholar 

  37. Silver EA (2004) An overview of heuristic solution methods. J Oper Res Soc 55(9):936–956

    Article  MATH  Google Scholar 

  38. Eberhart R, Kennedy J (1995) New optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science (MHS’95), Nagoya, pp 39–43

  39. Fvd Berg, Engelbrecht AP, Engelbrecht AP (2000) Cooperative learning in neural networks using particle swarm optimizers. S Afr Comput J 26:84–90

    Google Scholar 

  40. Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem. Microprocess Microsyst 26(8):363–371. doi:10.1016/S0141-9331(02)00053-4

    Article  Google Scholar 

  41. Allahverdi A, Al-Anzi FS (2006) A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Comput Oper Res 33(4):1056–1080. doi:10.1016/j.cor.2004.09.002

    Article  MATH  Google Scholar 

  42. Eberhart R, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming VII, vol 1447. Lecture notes in computer science, vol 1447. Springer, Berlin Heidelberg, pp 611–616. doi:10.1007/BFb0040812

    Google Scholar 

  43. Naka S, Genji T, Yura T, Fukuyama Y (2003) A hybrid particle swarm optimization for distribution state estimation. IEEE Trans Power Syst 18(1):60–68. doi:10.1109/TPWRS.2002.807051

    Article  Google Scholar 

  44. Yoshida H, Kawata K, Fukuyama Y, Nakanishi Y (1999) A particle swarm optimization for reactive power and voltage control considering voltage stability. In: Proceedings of the international conference on intelligent system application to power system (ISAP’99), Rio de Janeiro, pp 117–121

  45. Sevkli M, Guner AR (2006) A continuous particle swarm optimization algorithm for uncapacitated facility location problem. In: Paper presented at the proceedings of the 5th international conference on ant colony optimization and swarm intelligence, Brussels

  46. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on systems, man, and cybernetics, 1997. Computational cybernetics and simulation, vol. 4105, 12–15 Oct 1997, pp 4104–4108. doi:10.1109/ICSMC.1997.637339

  47. Yin P-Y (2004) A discrete particle swarm algorithm for optimal polygonal approximation of digital curves. J Vis Commun Image Represent 15(2):241–260. doi:10.1016/j.jvcir.2003.12.001

    Article  MathSciNet  Google Scholar 

  48. Liao C-J, Chao-Tang T, Luarn P (2007) A discrete version of particle swarm optimization for flowshop scheduling problems. Comput Oper Res 34(10):3099–3111. doi:10.1016/j.cor.2005.11.017

    Article  MATH  Google Scholar 

  49. Pan Q-K, Fatih Tasgetiren M, Liang Y-C (2008) A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput Oper Res 35(9):2807–2839. doi:10.1016/j.cor.2006.12.030

    Article  MathSciNet  MATH  Google Scholar 

  50. Gürdoğan N (1981) Üretim planlamasında doğrusal programlama ve demir çelik endüstrisinde bir uygulama, vol 473. Ankara Üniversitesi Siyasal Bilgiler Fakültesi Yayınları

  51. Coşkun B, İnal F, İnal Ş (2014) Ration programs. http://www.selcuk.edu.tr/dosyalar/files/014/RASYON.rar. Accessed 17 Jan 2016

  52. Coşkun B, İnal F, Şeker E (2000) Yemler ve Teknolojisi. Veterinary Medicine Faculty Publication Unit, Selçuk University Konya

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Akif Şahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahman, M.A., Altun, A.A. & Dündar, A.O. A new MILP model proposal in feed formulation and using a hybrid-linear binary PSO (H-LBP) approach for alternative solutions. Neural Comput & Applic 29, 537–552 (2018). https://doi.org/10.1007/s00521-016-2467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2467-5

Keywords

Navigation