Skip to main content
Log in

A standard deviation based firefly algorithm for multi-objective optimization of WEDM process during machining of Indian RAFM steel

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Non-conventional machining processes always suffer due to their low productivity and high cost. However, a suitable machining process should improve its productivity without compromising product quality. This implies the necessity to use efficient multi-objective optimization algorithm in non-conventional machining processes. In this present paper, an effective standard deviation based multi-objective fire-fly algorithm is proposed to predict various process parameters for maximum productivity (without affecting product quality) during WEDM of Indian RAFM steel. The process parameters of WEDM considered for this study are: pulse current (I), pulse-on time (T on), pulse-off time (T off) and wire tension (WT).While, cutting speed (CS) and surface roughness (SR) were considered as machining performance parameters. Mathematical models relating the process and response parameters had been developed by linear regression analysis and standard deviation method was used to convert this multi objective into single objective by unifying the responses. The model was then implemented in firefly algorithm in order to optimize the process parameters. The computational results depict that the proposed method is well capable of giving optimal results in WEDM process and is fairly superior to the two most popular evolutionary algorithms (particle swarm optimization algorithm and differential evolution algorithm) available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

I :

Pulse current

T on :

Pulse-on time

T off :

Pulse-off time

WT:

Wire tension

CS:

Cutting speed

min CS:

The minimum value of cutting speed

max CS:

The maximum value of cutting speed

SR:

Surface roughness

min SR:

The minimum value of surface roughness

max SR:

The maximum value of surface roughness

FA:

Firefly algorithm

PSO:

Particle swarm optimization algorithm

DE:

Differential evolution algorithm

RAFM:

Reduced activation ferritic martensitic steel

WEDM:

Wire electrical discharge machining

r :

Distance between two fire-fly

I(r):

Light intensity at distance (r)

I 0 :

Original light intensity at zero distance

γ :

Light absorption coefficient

β :

Attractiveness measure at distance (r)

β 0 :

Original attractiveness at zero distance

x i *(k):

Normalized value of output parameter ‘i’ at kth experiment

x (o) i (k):

Experimental value of output parameter ‘i’ at kth experiment

minx (o) i (k):

The minimum value of output parameter ‘i

maxx (o) i (k):

The maximum value of output parameter ‘i

ν i :

Variances of normalized output parameter ‘i

μ i :

Mean of all normalized experimental values (n) for output parameter ‘i

n :

Number of experiments

w 1, w 2 :

Individual response weight of cutting speed and surface roughness respectively

N :

Population size/size of the swarm

T :

Number of iteration

References

  1. Ho KH et al (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44(12):1247–1259

    Article  Google Scholar 

  2. Spedding TA, Wang ZQ (1997) Study on modeling of wire EDM process. J Mater Process Technol 69:8–28

    Article  Google Scholar 

  3. Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35:1693–1701

    Article  Google Scholar 

  4. Abbas N, Solomon DG (2007) Md. FuadBahari, A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47:1214–1228

    Article  Google Scholar 

  5. Liao YS, Huang JT, Su HC (1997) A study on the machining-parameters optimization of wire electrical discharge machining. J Mater Process Technol 71(3):487–493

    Article  Google Scholar 

  6. Lin C-T, Chung I, Huang S-Y (2001) Improvement of machining accuracy by fuzzy logic at corner parts for wire-EDM. Fuzzy Sets Syst 122(3):499–511

    Article  MathSciNet  Google Scholar 

  7. Tosun N, Cogun C, Tosun G (2004) A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. J Mater Process Technol 152:316–322

    Article  Google Scholar 

  8. Singh PN, Raghukandan K, Pai BC (2004) Optimization by grey relational analysis of EDM parameters on machining Al–10% SiCP composites. J Mater Process Technol 155:1658–1661

    Article  Google Scholar 

  9. Sarkar S, Mitra S, Bhattacharyya B (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159:286–294

    Article  Google Scholar 

  10. Kuriakose S, Shunmugam MS (2005) Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J Mater Process Technol 170:133–141

    Article  Google Scholar 

  11. Chiang K-T, Chang F-P (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180(1):96–101

    Article  Google Scholar 

  12. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9–10):911–925

    Article  Google Scholar 

  13. Mandal D, Pal SK, Saha P (2007) Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater Process Technol 186(1):154–162

    Article  Google Scholar 

  14. Kanagarajan D et al (2008) Optimization of electrical discharge machining characteristics of WC/Co composites using non-dominated sorting genetic algorithm (NSGA-II). Int J Adv Manuf Technol 36(11-12):1124–1132

    Article  Google Scholar 

  15. Ramakrishnan R, Karunamoorthy L (2008) Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J Mater Process Technol 207(1):343–349

    Article  Google Scholar 

  16. Sarkar S et al (2008) Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. J Mater Process Technol 205(1):376–387

    Article  Google Scholar 

  17. Saha P et al (2009) Modeling of wire electro-discharge machining of TiC/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique. Int J Adv Manuf Technol 43(1–2):107–116

    Article  Google Scholar 

  18. Chen H-C et al (2010) Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Syst Appl 37(10):7147–7153

    Article  Google Scholar 

  19. Saha, P, Saha P, Pal SK (2011) Parametric optimization in WEDM of WC-Co composite by Neuro-Genetic technique. In: Proceedings of the World Congress on Engineering, vol 3

  20. Majumder A (2012) Parametric optimization of electric discharge machining by GA-based response surface methodology. J Manuf Sci Prod 12(1):25–30

    Google Scholar 

  21. Saha P et al (2013) Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique. Appl Soft Comput 13(4):2065–2074

    Article  Google Scholar 

  22. Majumder A et al (2014) An approach to optimize the EDM process parameters using desirability-based multi-objective PSO. Prod Manuf Res 2(1):228–240

    Google Scholar 

  23. Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  24. Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):269–308

    Article  Google Scholar 

  25. Roeva O, Slavov T, Fidanova S (2014) Population-based vs. single point search meta-heuristics for a PID controller tuning. In: Vasant P (ed) Handbook of research on novel soft computing intelligent algorithms: theory and practical applications. Information Science Reference, Hershey, pp 200–233. doi:10.4018/978-1-4666-4450-2.ch007

  26. Yang X-S, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1:36–50

    Article  Google Scholar 

  27. Apostolopoulos T, Vlachos A (2010) Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int J Comb 2011:523806. doi:10.1155/2011/523806

  28. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23):2325–2336

    Article  Google Scholar 

  29. Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evolut Comput 1(3):164–171

    Article  Google Scholar 

  30. Taleizadeh AA, Cárdenas-Barrón LE (2013) Metaheuristic algorithms for supply chain management problems. In Vasant P (ed) Meta-heuristics optimization algorithms in engineering, business, economics, and finance. Information Science Reference, Hershey, pp 110–135. doi:10.4018/978-1-4666-2086-5.ch004

  31. Rao BV, Kumar GN (2015) A comparative study of BAT and firefly algorithms for optimal placement and sizing of static VAR compensator for enhancement of voltage stability. Int J Energy Optim Eng (IJEOE) 4(1):68–84. doi:10.4018/ijeoe.2015010105

    MathSciNet  Google Scholar 

  32. Montgomery DC, Runger GC (2003) Applied statistics and probability for engineer. Wiley, Hoboken

    Google Scholar 

  33. Mendenhall W, Beaver RJ, Beaver BM (2012) Introduction to probability and statistics. Cengage Learning

  34. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46.doi:10.1016/j.swevo.2013.06.001

    Article  Google Scholar 

  35. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  36. Raj B, Rao K, Bhaduri AK (2010) Progress in the development of reduced activation ferritic-martensitic steels and fabrication technologies in India. Fusion Eng Des 85(7):1460–1468

    Article  Google Scholar 

  37. Majumder A, Majumder A (2015) Application of standard deviation method integrated PSO approach in optimization of manufacturing process parameters. In: Vasant P (ed) Handbook of research on artificial intelligence techniques and algorithms. Information Science Reference, Hershey, pp 536–563. doi:10.4018/978-1-4666-7258-1.ch017

  38. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178

  39. Majumder A (2014) Comparative study of three evolutionary algorithms coupled with neural network model for optimization of electric discharge machining process parameters. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405414538960

  40. Roque CMC, Martins PALS (2015) Differential evolution optimization for the analysis of composite plates with radial basis collocation meshless method. Compos Struct 124:317–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, A., Das, A. & Das, P.K. A standard deviation based firefly algorithm for multi-objective optimization of WEDM process during machining of Indian RAFM steel. Neural Comput & Applic 29, 665–677 (2018). https://doi.org/10.1007/s00521-016-2471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2471-9

Keywords

Navigation