Skip to main content

Advertisement

Log in

A computational approach for nuclear export signals identification using spiking neural P systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Nuclear export signal (NES) is a nuclear targeting signal within cargo proteins, which is involved in signal transduction and cell cycle regulation. NES is believed to be “born to be weak”; hence, it is a challenge in computational biology to identify it from high-throughput data of amino acid sequences. This work endeavors to tackle the challenge by proposing a computational approach to identifying NES using spiking neural P (SN P) systems. Specifically, secondary structure elements of 30 experimentally verified NES are randomly selected for training an SN P system, and then 1224 amino acid sequences (containing 1015 regular amino acid sequences and 209 experimentally verified NES) abstracted from 221 NES-containing protein sequences randomly in NESdb are selected to test our method. Experimental results show that our method achieves a precision rate 75.41 %, better than NES-REBS 47.2 %, Wregex 25.4 %, ELM, and NetNES 37.4 %. The results of this study are promising in terms of the fact that it is the first feasible attempt to use SN P systems in computational biology after many theoretical advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  Google Scholar 

  2. Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13:310–319

    Article  Google Scholar 

  3. Ren X-X, Wang H-B, Li C, Jiang J-F, Xiong S-D, Jin X, Wu L, Wang J-H (2016) HIV-1 nef-associated factor 1 enhances viral production by interacting with CRM1 to promote nuclear export of unspliced HIV-1 gag mRNA. J Biol Chem 291:4580–4588

    Article  Google Scholar 

  4. Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  Google Scholar 

  5. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11:490–501

    Article  Google Scholar 

  6. La Cour T, Kiemer L, Mølgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    Article  Google Scholar 

  7. Fischer U, Huber J, Boelens WC, Mattajt LW, Lührmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483

    Article  Google Scholar 

  8. Fischer U, Meyer S, Teufel M, Heckel C, Lührmann R, Rautmann G (1994) Evidence that HIV-1 rev directly promotes the nuclear export of unspliced RNA. EMBO J 13:4105

    Google Scholar 

  9. Ho JH-N, Kallstrom G, Johnson AW (2000) Nmd3p is a crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol 151:1057–1066

    Article  Google Scholar 

  10. Vissinga CS, Yeo TC, Warren S, Brawley JV, Phillips J, Cerosaletti K, Concannon P (2009) Nuclear export of NBN is required for normal cellular responses to radiation. Mol Cell Biol 29:1000–1006

    Article  Google Scholar 

  11. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) Crm1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  Google Scholar 

  12. KIrlI K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D (2016) A deep proteomics perspective on crm1-mediated nuclear export and nucleocytoplasmic partitioning. eLife e11466. doi:10.7554/eLife.11466

  13. Xu D, Grishin NV, Chook YM (2012) NESdb: a database of nes-containing crm1 cargoes. Mol Biol Cell 23:3673

    Article  Google Scholar 

  14. Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, Travé G, Gibson TJ (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603

    Article  Google Scholar 

  15. Iraia G-S, Sonia B, Jose AR (2012) A global survey of crm1-dependent nuclear export sequences in the human deubiquitinase family. Biochem J 441:209–217

    Article  Google Scholar 

  16. Via A, Gould CM, Gemünd C, Gibson TJ, Helmer-Citterich M (2009) A structure filter for the eukaryotic linear motif resource. BMC Bioinform 10:351

    Article  Google Scholar 

  17. Lee T-Y, Lin Z-Q, Hsieh S-J, Bretaña NA, Lu C-T (2011) Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27:1780–1787

    Article  Google Scholar 

  18. Van Berlo RJ, Wessels LF, De Ridder D, Reinders MJ (2007) Protein complex prediction using an integrative bioinformatics approach. J Bioinform Comput Biol 5:839–864

    Article  Google Scholar 

  19. la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM, Brunak S (2003) NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res 31:393–396

    Article  Google Scholar 

  20. Xu D, Farmer A, Collett G, Grishin NV, Chook YM (2012) Sequence and structural analyses of nuclear export signals in the NESdb database. Mol Biol Cell 23:3677–3693

    Article  Google Scholar 

  21. Dong X, Biswas A, Chook YM (2009) Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Nat Struct Mol Biol 16:558–560

    Article  Google Scholar 

  22. Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17:1367–1376

    Article  Google Scholar 

  23. Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C et al (2009) ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res. doi:10.1093/nar/gkp1016

  24. Fu S-C, Imai K, Horton P (2011) Prediction of leucine-rich nuclear export signal containing proteins with nessential. Nucleic Acids Res. doi:10.1093/nar/gkr493

  25. Prieto G, Fullaondo A, Rodriguez JA (2014) Prediction of nuclear export signals using weighted regular expressions (wregex). Bioinformatics 30(9):1220–1227. doi:10.1093/bioinformatics/btu016

  26. Ionescu M, Păun G, Yokomori T (2006) Spiking neural P systems. Fundam Inform 71:279–308

    MathSciNet  MATH  Google Scholar 

  27. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Networks 10:1659–1671

    Article  Google Scholar 

  28. Chen H, Freund R, Ionescu M, Păun G, Pérez-Jiménez MJ (2007) On string languages generated by spiking neural P systems. Fundam Inform 75:141–162

    MathSciNet  MATH  Google Scholar 

  29. Păun A, Păun G (2007) Small universal spiking neural P systems. BioSyst 90:48–60

    Article  MATH  Google Scholar 

  30. Pan L, Paun G (2009) Spiking neural P systems with anti-spikes. Int J Comput Commun Control IV(3):273–282

    Article  Google Scholar 

  31. Song T, Pan L, Jiang K, Song B, Chen W (2013) Normal forms for some classes of sequential spiking neural P systems. IEEE Trans NanoBiosci 12:255–264

    Article  Google Scholar 

  32. Cavaliere M, Ibarra OH, Păun G, Egecioglu O, Ionescu M, Woodworth S (2009) Asynchronous spiking neural P systems. Theor Comput Sci 410:2352–2364

    Article  MathSciNet  MATH  Google Scholar 

  33. Song T, Pan L, Păun G (2012) Asynchronous spiking neural P systems with local synchronization. Inf Sci 219:197–207

    Article  MathSciNet  MATH  Google Scholar 

  34. Păun G (2007) Spiking neural P systems with astrocyte-like control. J Univ Comput Sci 13:1707–1721

    MathSciNet  Google Scholar 

  35. Song T, Pan L (2016) Spiking neural P systems with request rules. Neurocomputing 193:193–200

    Article  Google Scholar 

  36. Wang J, Peng H (2013) Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. Int J Comput Math 90:857–868

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeng X, Zhang X, Pan L (2009) Homogeneous spiking neural P systems. Fundam Inf 97:275–294

    MathSciNet  MATH  Google Scholar 

  38. Song T, Wang X, Zhang Z, Chen Z (2014) Homogenous spiking neural P systems with anti-spikes. Neural Comput Appl 24(7–8):1833–1841. doi:10.1007/s00521-013-1397-8

  39. Ibarra OH, Păun A, Rodríguez-Patón A (2009) Sequential SNP systems based on min/max spike number. Theor Comput Sci 410:2982–2991

    Article  MathSciNet  MATH  Google Scholar 

  40. Song T, Xu J, Pan L (2015) On the universality and non-universality of spiking neural P systems with rules on synapses. IEEE Trans NanoBiosci 14:960–966

    Article  Google Scholar 

  41. Song T, Pan L, Păun G (2014) Spiking neural P systems with rules on synapses. Theor Comput Sci 529:82–95

    Article  MathSciNet  MATH  Google Scholar 

  42. Song T, Pan L (2015) Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans NanoBiosci 1:38–44

    Article  Google Scholar 

  43. Song T, Pan L (2015) Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans NanoBiosci 4:465–477

    Article  Google Scholar 

  44. Ionescu M, Sburlan D (2007) Several applications of spiking neural P systems. In: Fifth brainstorming week on membrane computing, Sevilla

  45. Adl A, Badr A, Farag I (2010) Towards a spiking neural P systems OS. arXiv preprint arXiv:1012.0326

  46. Zeng X, Song T, Zhang X, Pan L (2012) Performing four basic arithmetic operations with spiking neural P systems. IEEE Trans NanoBiosci 11:366–374

    Article  Google Scholar 

  47. Zhang G, Rong H, Neri F, Pérez-Jiménez MJ (2014) An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int J Neural Syst 24(5):1440006

  48. Wang T, Zhang G, Zhao J, He Z, Wang J, Pérez-Jiménez MJ (2014) Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans Power Syst 30:1182–1194

    Article  Google Scholar 

  49. Peng H, Wang J, Pérez-Jiménez MJ, Wang H, Shao J, Wang T (2013) Fuzzy reasoning spiking neural P system for fault diagnosis. Inf Sci 235:106–116

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang J, Shi P, Peng H, Pérez-Jiménez MJ, Wang T (2013) Weighted fuzzy spiking neural P systems. IEEE Trans Fuzzy Syst 21:209–220

    Article  Google Scholar 

  51. Ishdorj T-O, Leporati A, Pan L, Zeng X, Zhang X (2010) Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci 411:2345–2358

    Article  MathSciNet  MATH  Google Scholar 

  52. Pan L, Păun G, Perez-Jimenez MJ (2011) Spiking neural P systems with neuron division and budding. Sci China Inform Sci 54:1596–1607

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang X, Song T, Gong F, Zheng P (2016) On the computational power of spiking neural P systems with self-organization. Sci Rep. doi:10.1038/srep27624

    Google Scholar 

  54. Leporati A, Mauri G, Zandron C, Păun G, Pérez-Jiménez MJ (2009) Uniform solutions to SAT and subset sum by spiking neural P systems. Nat Comput 8:681–702

    Article  MathSciNet  MATH  Google Scholar 

  55. Macias-Ramos LF, Perez-Hurtado I, Garcia-Quismondo M, Valencia-Cabrera L, Perez-Jimenez MJ, Riscos-Nunez A (2012) A P-lingua based simulator for spiking neural P systems. Lect Notes Comput Sci 7184:257–281

  56. Ramirez-Martinez D, Gutierrez-Naranjo MA (2007) A software tool for dealing with spiking neural P systems. In: Gutirrez-Naranjo MA (ed) Proceeding of the 5th brainstorming week on membrane computing, pp 299–313

  57. Macias-Ramos LF, Perez-Jimenez MJ, Song T, Pan L (2015) Extending simulation of asynchronous spiking neural P systems in P-Lingua. Fundam Inform 136:253–267

    MathSciNet  MATH  Google Scholar 

  58. Tingfang W, Xun W, Zheng Z, Faming G, Tao S, Zhihua C (2016) NES-REBS: a novel nuclear export signal prediction method using regular expressions and biochemical properties. J Bioinform Comput Biol (in press)

  59. Prieto G, Fullaondo A, Rodriguez JA (2014) Prediction of nuclear export signals using weighted regular expressions (wregex). Bioinformatics 30:1220–1227

    Article  Google Scholar 

  60. Carla HV, Chiodi G (2013) Structural characterization of netnes glycopeptide from Trypanosoma cruzi. Carbohydr Res 373:28–34

    Article  Google Scholar 

  61. Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  62. Gutierrez-Naranjo MA, Perez-Jimenez MJ (2009) Hebbian learning from spiking neural P systems view. Lect Notes Comput Sci 5391:217–230

    Article  MATH  Google Scholar 

  63. Zeng X, Zhang X, Zou Q (2016) Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Brief Bioinform 17(2):193–203

  64. Zou Q, Li J, Song L, Zeng X, Wang G (2016) Similarity computation strategies in the microRNA disease network: a survey. Brief Funct Genomics 15(1):55–64

  65. Wang X, Song T, Wang Z, Su Y, Liu X (2013) MRPGA: motif detecting by modified random projection strategy and genetic algorithm. J Comput Theor Nanosci 10:1209–1214

    Article  Google Scholar 

  66. Wang X, Miao Y, Cheng M (2014) Finding motifs in DNA sequences using low-dispersion sequences. J Comput Biol 21:320–329

    Article  MathSciNet  Google Scholar 

  67. Zou Q, Hu Q, Guo M, Wang G (2015) HAlign: fast multiple similar DNA/RNA sequence alignment based on the centre star strategy. Bioinformatics 31:2475–2481

    Article  Google Scholar 

  68. Liu B, Chen J, Wang X (2015) Application of learning to rank to protein remote homology detection. Bioinformatics 31:3492–3498

    Article  Google Scholar 

  69. Liu X, Li Z, Liu J, Liu L, Zeng X (2015) Implementation of arithmetic operations with time-free spiking neural P systems. IEEE Trans Nanobioscience 14(6):617–624

  70. Zhang X, Pan L, Paun A (2015) On the universality of axon P systems. IEEE Trans Neural Netw Learn Syst 26:2816–2829

    Article  MathSciNet  Google Scholar 

  71. Zhang X, Tian Y, Jin Y (2015) A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans Evolut Comput 19(6):761–776

  72. Zhang X, Tian Y, Cheng R, Jin Y (2015) An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans Evol Comput 19:201–213

    Article  Google Scholar 

  73. Song T, Pan L (2015) Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans NanoBiosci 14:465–477

    Article  Google Scholar 

  74. Zeng X, Zhang X, Song T, Pan L (2014) Spiking neural P systems with thresholds. Neural Comput 26:1340–1361

    Article  MathSciNet  Google Scholar 

  75. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26:1403–1415

    Article  MathSciNet  Google Scholar 

  76. Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2544779

  77. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  78. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  79. Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27:340–352

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61272152, 61370105, 61402187, 61502535, 61572522 and 61572523), China Postdoctoral Science Foundation funded project (2016M592267), Program for New Century Excellent Talents in University (NCET-13-1031), 863 Program (2015AA020925), and Fundamental Research Funds for the Central Universities (R1607005A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, P., Wang, X. et al. A computational approach for nuclear export signals identification using spiking neural P systems. Neural Comput & Applic 29, 695–705 (2018). https://doi.org/10.1007/s00521-016-2489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2489-z

Keywords

Navigation